Chilly Cardano Curve

Calculus Level 5

If the area of the blue region bounded by the graph 6 x 3 + 11 x 2 y + 6 x y 2 + y 3 = x 6x^3+11x^2y+6xy^2+y^3=x and the horizontal axis can be expressed as

A B ln ( C D ) \dfrac{A}{B}\ln\left(\dfrac{C}{D}\right)

where A , B , C , D A,B,C,D are positive integers and gcd ( A , B ) = gcd ( C , D ) = 1 \gcd(A,B) = \gcd(C,D) = 1 , input the smallest possible value of the product A B C D ABCD as your answer.


The answer is 24.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hosam Hajjir
Feb 6, 2021

Using polar coordinates, we have x = r cos t , y = r sin t x = r \cos t , y = r \sin t . Substitute these in, you get,

r 3 ( 6 cos 3 t + 11 cos 2 t sin t + 6 cos t sin 2 t + sin 3 t ) = r cos t r^3 ( 6 \cos^3 t + 11 \cos^2 t \sin t + 6 \cos t \sin^2 t + \sin^3 t ) = r \cos t

so that

r 2 = cos t 6 cos 3 t + 11 cos 2 t sin t + 6 cos t sin 2 t + sin 3 t r^2 = \dfrac{ \cos t }{6 \cos^3 t + 11 \cos^2 t \sin t + 6 \cos t \sin^2 t + \sin^3 t}

The area is given by

A = 2 ( 1 2 ) 0 π 2 r 2 d t = 0 π 2 cos t 6 cos 3 t + 11 cos 2 t sin t + 6 cos t sin 2 t + sin 3 t d t A = \displaystyle 2 (\frac{1}{2} ) \int_0^{\frac{\pi}{2} } r^2 dt = \int_0^{\frac{\pi}{2}} \dfrac{ \cos t }{6 \cos^3 t + 11 \cos^2 t \sin t + 6 \cos t \sin^2 t + \sin^3 t} dt

Multiply top and bottom by sec 3 t \sec^3 t

A = 0 π 2 sec 2 t 6 + 11 tan t + 6 tan 2 t + tan 3 t d t A = \displaystyle \int_0^{\frac{\pi}{2}} \dfrac{ \sec^2 t }{6 + 11 \tan t + 6 \tan^2 t + \tan^3 t} dt

Substitute u = tan t u = \tan t , then d u = sec 2 t d t du = \sec^2 t dt and the integral becomes

A = 0 d u u 3 + 6 u 2 + 11 u + 6 A = \displaystyle \int_0^{\infty} \dfrac{du}{u^3 + 6 u^2 + 11 u + 6 }

By partial fraction expansion we have 1 u 3 + 6 u 2 + 11 u + 6 = 1 2 ( 1 u + 1 2 u + 2 + 1 u + 3 ) \dfrac{1}{u^3 + 6 u^2 + 11 u + 6 } = \dfrac{1}{2} \left( \dfrac{1}{u+1} - \dfrac{2}{u+2} + \dfrac{1}{u+3} \right)

The indefinite integral of which is 1 2 ln ( u + 1 ) ( u + 3 ) ( u + 2 ) 2 \dfrac{1}{2} \ln \dfrac{ (u+1)(u+3) }{(u + 2)^2}

Finally evaluating this between the limits yields

A = 0 1 2 ln 3 4 = 1 2 ln 4 3 A = 0 - \dfrac{1}{2} \ln \dfrac{3}{4} = \dfrac{1}{2} \ln \dfrac{4}{3}

Therefore A = 1 , B = 2 , C = 4 , D = 3 A = 1 , B = 2 , C = 4 , D = 3 and A B C D = 24 ABCD = \boxed{24}

The proof will be complete if you prove that the curve is an odd function as I think you have used the symmetry of the curve when you put the limits 0 to π 2 \frac{π}{2} and multiplied it by two.

Jason Gomez - 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...