Chinese remainder theorem #2018

Let A A be the following system of congruences: { x 1 mod 2 2 x 2 mod 5 10 x 5 mod 15 \displaystyle \begin{cases} x \equiv 1 \space \text{mod 2} \\ 2x \equiv 2 \space \text{mod 5} \\ 10x \equiv 5 \space \text{mod 15} \end{cases} If a a is the smallest positive integer solution of A A and b b is the biggest positive integer solution of A A such that b < 1000 b < 1000 , submit a + b a + b


The answer is 982.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

  • 5 2 x 2 = 2 ( x 1 ) 5 x 1 5 \mid 2x - 2 = 2(x - 1) \iff 5 \mid x - 1 because gcd(2,5) = 1 \text{gcd(2,5) = 1}

  • 15 10 x 5 5 3 5 ( 2 x 1 ) 3 2 x 1 3 2 x 4 = 2 ( x 2 ) 3 x 2 15 \mid 10x - 5 \iff 5 \cdot 3 \mid 5(2x - 1) \iff 3 \mid 2x - 1 \iff 3 \mid 2x - 4 = 2(x - 2) \iff 3 \mid x - 2 because gcd(2,3) =1 \text{gcd(2,3) =1} .

Because of this A A has the same solutions than B { x 1 mod 2 x 1 mod 5 x 2 mod 3 C { x 1 mod 10 x 2 mod 3 \displaystyle B \begin{cases} x \equiv 1 \space \text{mod 2} \\ x \equiv 1 \space \text{mod 5} \\ x \equiv 2 \space \text{mod 3} \end{cases} \iff C \begin{cases} x \equiv 1 \space \text{mod 10} \\ x \equiv 2 \space \text{mod 3} \end{cases} Applying chinese remainder theorem one solution of C C is x = 11 = 1 3 ( 3 ) + 2 10 1 x = 11 = 1 \cdot 3 \cdot (-3) + 2 \cdot 10 \cdot 1 and therefore the general solutions of A A are x = 11 + 30 λ x = 11 + 30 \cdot \lambda with λ Z \lambda \in \mathbb{Z} so a = 11 a = 11 and b = 11 + 30 32 = 971 b = 11 + 30 \cdot 32 = 971 and then a + b = 982 a + b = 982

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...