Choppin’ the Logs

Algebra Level 4

Does the following hold for any positive integer n n ?

log 2 ( n ) + log 3 ( n ) + + log n ( n ) = n + n 3 + + n n \lfloor{\log_2 (n)}\rfloor + \lfloor{\log_3 (n)} \rfloor + \cdots + \lfloor{\log_n (n)} \rfloor = \lfloor \sqrt{n} \rfloor + \lfloor \sqrt[3]{n} \rfloor + \cdots + \lfloor \sqrt[n]{n} \rfloor

Always true Never true True for some n n

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Nov 29, 2020

For any integer n 2 n \ge 2 , let S S be the set S = { ( k , m ) N 2 1 k n , 2 m n , k m n } S \; = \; \big\{ (k,m) \in \mathbb{N}^2 \; \big| \; 1 \le k \le n \,,\,2 \le m \le n\,,\,k^m \le n \big\} Let us count the number of elements of S S in two different ways. Firstly S = m = 2 n { k N 1 k n , k m n } = m = 2 n { k N 1 k n m } = m = 2 n n m |S| \; = \; \sum_{m=2}^n \left|\big\{ k \in \mathbb{N} \,\big|\, 1 \le k \le n \,,\,k^m \le n \big\}\right| \; = \; \sum_{m=2}^n \left|\big\{ k \in \mathbb{N}\,\big|\, 1 \le k \le \sqrt[m]{n}\big\}\right| \; = \; \sum_{m=2}^n \left\lfloor \sqrt[m]{n}\right\rfloor On the other hand S = k = 1 n { m N 2 m n , k m n } = n 1 + k = 2 n { m N 2 m log k n } = n 1 + k = 2 n ( log k n 1 ) = k = 2 n log k n \begin{aligned} |S| & = \; \sum_{k=1}^n \left|\big\{ m \in \mathbb{N}\,\big|\,2 \le m \le n\,,\,k^m \le n \big\}\right| \; = \; n-1 + \sum_{k=2}^n\left|\big\{ m \in \mathbb{N}\,\big|\, 2 \le m \le \log_k n\big\}\right| \\ & = \; n-1 + \sum_{k=2}^n \left( \left\lfloor \log_k n\right\rfloor - 1\right) \; = \; \sum_{k=2}^n \left\lfloor \log_k n\right\rfloor \end{aligned} Hence the identity in question is true for all integers n 2 n \ge 2 .

Great explanation Mr. Hennings! For the OP you can compare log rules and root rules and see how they compare (quick method).

hey hey - 6 months, 2 weeks ago

@Mark Hennings , I think you should specify that n 2 n\ge 2 in the question. This is also an old USSR problem.

ChengYiin Ong - 4 months, 3 weeks ago

Log in to reply

Don’t tell me... post a report. Of course, the LHS implicitly requires n 2 n \ge2 .

Mark Hennings - 4 months, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...