Chords in a circle

Geometry Level 3

A circle of radius 6 6 has parallel chords A B A B and C D CD in it. It is given that A C D = B D C = 4 5 \angle ACD = \angle BDC = 45^{\circ} , and that C D = 10 \overline{CD} = 10 , then A B = N \overline{AB} = \sqrt{N} . Enter N N as your answer.

Diagram not drawn to scale


The answer is 44.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

David Vreken
Dec 7, 2020

Let A C AC and B D BD intersect at E E , and let the center of the circle be O O so that O B = O C = 6 OB = OC = 6 .

Since central B O C \angle BOC subtends the same arc as inscribed B D C \angle BDC , B O C = 2 B D C = 2 45 ° = 90 ° \angle BOC = 2 \cdot \angle BDC = 2 \cdot 45° = 90° .

From right isosceles B O C \triangle BOC , B C = 6 2 BC = 6\sqrt{2} , and from right isosceles E D C \triangle EDC , E C = 10 2 EC = \frac{10}{\sqrt{2}} .

Then by the Pythagorean Theorem on B E C \triangle BEC , B E = ( 6 2 ) 2 ( 10 2 ) 2 = 22 BE = \sqrt{(6\sqrt{2})^2 - (\frac{10}{\sqrt{2}})^2} = \sqrt{22} , so that from right isosceles A B E \triangle ABE , A B = 22 2 = 44 AB = \sqrt{22} \cdot \sqrt{2} = \sqrt{44} .

Therefore, N = 44 N = \boxed{44} .

Let A C AC and B D BD intersect at E E , the center of the circle be O O , and O N ON be perpendicular to C D CD . Then C N = D N = 5 CN = DN = 5 , and O N = O C 2 C N 2 = 6 2 5 2 = 11 ON = \sqrt{OC^2-CN^2} = \sqrt{6^2-5^2} = \sqrt{11}

Let O C D = O D C = θ \angle OCD = \angle ODC = \theta . Then

A C = 2 O C cos O C E = 2 6 cos ( 4 5 θ ) = 12 ( cos 4 5 cos θ sin 4 5 sin θ ) = 6 2 ( 5 6 11 6 ) = 5 2 22 A E = A C C E = 5 2 22 C D cos 4 5 = 5 2 22 5 2 = 22 A B = A E sec 4 5 = 22 2 = 44 \begin{aligned} AC & = 2 \cdot OC \cdot \cos \angle OCE = 2 \cdot 6 \cos (45^\circ - \theta) \\ & = 12 (\cos 45^\circ \cos \theta - \sin 45^\circ \sin \theta) \\ & = 6\sqrt 2 \left(\dfrac 56 - \dfrac {\sqrt{11}}6 \right) = 5\sqrt 2 - \sqrt{22} \\ AE & = AC - CE = 5\sqrt 2 - \sqrt{22} - CD \cos 45^\circ = 5\sqrt 2 - \sqrt{22} - 5\sqrt 2 = \sqrt{22} \\ \implies AB & = AE \cdot \sec 45^\circ = \sqrt{22} \cdot \sqrt 2 = \sqrt{44} \end{aligned}

Therefore N = 44 N = \boxed{44} .

Toby M
Dec 6, 2020

Let O be the centre of the circle, let M be the midpoint of AB and N be the midpoint of CD, and let P be the intersection of AC and BD. Furthermore, let AM = half of AB be x x .

ND = 10/2 = 5, and OD = 6 (radius), so ON = 6 2 5 2 = 11 \sqrt{6^2-5^2} = \sqrt{11} . Meanwhile, DN = PN, so PN = 5, and similarly, MP = x. Thus OP = PN - ON = 5 11 5 - \sqrt{11} .

Now A M , P O AM, PO form the legs of a right triangle, and A O AO is the hypotenuse. A O = 6 AO = 6 as it is also a radius. Hence x 2 + ( x + 5 11 ) 2 = 6 2 x^2 + (x + 5 - \sqrt{11})^2 = 6^2 , so x 2 + x 2 + 2 ( 5 11 ) x + 36 10 11 = 36 2 x 2 + ( 10 2 11 ) x 10 11 = 0 x 2 + ( 5 11 ) x 5 11 = 0 x^2 + x^2 + 2(5 -\sqrt{11})x + 36 - 10\sqrt{11} = 36 \Rightarrow 2x^2 + (10 - 2\sqrt{11})x - 10\sqrt{11} = 0 \Rightarrow x^2 + (5 - \sqrt{11})x - 5 \sqrt{11} = 0 .

Factorising gives ( x + 5 ) ( x 11 ) = 0 x = 5 , 11 (x + 5)(x - \sqrt{11}) = 0 \Rightarrow x = -5, \sqrt{11} . Since x x has to be positive, x = 11 x = \sqrt{11} only. Finally, remember that A B = 2 x = 2 11 = 44 AB = 2x = 2 \sqrt{11} = \sqrt{44} , hence N = 44 N = \boxed{44} .

Hongqi Wang
Dec 6, 2020

Let circle center is O, CD's midpoint is M and AC's midpoint is N, intersection of AC and BD is P: O M = O C 2 ( C D 2 ) 2 = 6 2 5 2 = 11 P M = C D 2 = 5 O P = P M O M = 5 11 O N = O P 2 = 5 11 2 A N = A O 2 O N 2 = 6 2 ( 5 11 2 ) 2 = 5 + 11 2 A P = A N P N = 5 + 11 2 5 11 2 = 22 A B = A P 2 = 44 N = 44 \\ OM = \sqrt {{OC}^2 - (\frac {CD}2)^2} = \sqrt {6^2 - 5^2} = \sqrt {11} \\ PM = \frac {CD}2 = 5 \\ OP = PM - OM = 5 - \sqrt {11} \\ ON = \frac {OP}{\sqrt 2} = \frac {5 - \sqrt {11}}{\sqrt 2} \\ AN = \sqrt {{AO}^2 - {ON}^2} \\ = \sqrt {6^2 - (\frac {5 - \sqrt {11}}{\sqrt 2})^2} = \frac {5 + \sqrt {11}}{\sqrt 2} \\ AP = AN - PN \\ = \frac {5 + \sqrt {11}}{\sqrt 2} - \frac {5 - \sqrt {11}}{\sqrt 2} \\ = \sqrt {22} \\ AB = AP \sqrt 2 = \sqrt {44} \\ \therefore N = 44

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...