[[Christmas]] New Year Streak 85/88: Calculus Rush #3

Calculus Level 5

A function defined over all reals, f ( x ) , f(x), satisfies the below conditions:

1. For 1 x < 4 -1\le x < 4 we have f ( x ) = { 2 x e x 2 1 + 2 ( 1 x < 1 ) 2 x + 2 ( 1 x < 2 ) 6 x 3 ( 2 x < 4 ) . f(x)=\begin{cases}2x e^{x^2-1}+2& (-1\le x < 1) \\ 2x+2& (1\le x <2) \\ 6|x-3| & (2\le x<4) \end{cases}.

2. For all integer k , k, we have f ( x + 5 k ) f ( x ) = 6 k ( 1 x < 4 ) . f(x+5k)-f(x)=6k~(-1\le x<4).

For a real t , t, let g ( t ) g(t) be the sum of all the real roots for x x for the equation f ( x ) = t . f(x)=t.

Then, n = 1 5 6 n 4 6 n 2 g ( t ) d t = p + q e , \displaystyle \sum_{n=1}^{5} \int_{6n-4}^{6n-2}g(t)dt = p+\frac{q}{e}, for two rational numbers p , q . p,~q.

Find the value of p + q . p+q.


This problem is a part of <Christmas Streak 2017> series .


The answer is 370.0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Boi (보이)
Dec 31, 2017

Let h ( x ) = 2 x e x 2 1 + 2 ( 0 x < 1 ) , h(x)=2xe^{x^2-1}+2~(0\le x <1), then g ( t ) = h 1 ( t ) + 6 ( 2 t < 4 ) . g(t)=h^{-1}(t)+6~(2\le t<4). Therefore,

k = 1 5 6 n 4 6 n 2 g ( t ) d t = 2 4 { 5 g ( t ) + 150 } d t = 5 2 4 h 1 ( t ) d t + 360 = 5 [ e x 2 1 + 2 x ] 0 1 + 380 = 365 + 5 e . \sum_{k=1}^{5} \int_{6n-4}^{6n-2}g(t)dt \\ = \int_{2}^{4} \{5g(t)+150\}dt \\ = 5 \int_{2}^{4} h^{-1}(t)dt + 360 \\ =-5\left[e^{x^2-1}+2x\right]_0^1 + 380 \\ = 365+\frac{5}{e}.

p + q = 365 + 5 = 370 . \therefore~p+q=365+5=\boxed{370}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...