Christmas number 6

Calculus Level 5

2 2 ( 4 x 2 ) / 2 ( 4 x 2 ) / 2 x 2 + 3 y 2 8 x 2 y 2 d z d y d x = ? \large \int_{-2}^{2}\int_{-\sqrt{(4-x^2)/2}}^{\sqrt{(4-x^2)/2}}\int_{x^2 + 3y^2}^{8-x^2-y^2}\,dz \ dy \ dx = \, ?


The answer is 35.543.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Dec 11, 2016

I = 2 2 4 x 2 2 4 x 2 2 x 2 + 3 y 2 8 x 2 y 2 d z d y d x = 2 2 4 x 2 2 4 x 2 2 z x 2 + 3 y 2 8 x 2 y 2 d y d x = 2 2 4 x 2 2 4 x 2 2 8 2 x 2 4 y 2 d y d x = 2 2 ( 8 2 x 2 ) y 4 y 3 3 4 x 2 2 4 x 2 2 d x = 2 2 ( 8 2 x 2 ) 2 ( 4 x 2 2 ) 1 2 4 3 2 ( 4 x 2 2 ) 3 2 d x = 2 2 8 ( 4 x 2 2 ) 3 2 8 3 ( 4 x 2 2 ) 3 2 d x = 2 2 16 3 ( 4 x 2 2 ) 3 2 d x = 2 2 64 3 2 ( 1 x 2 4 ) 3 2 d x Let sin θ = x 2 , d x = 2 cos θ d θ = 128 3 2 π 2 π 2 cos 4 θ d θ The integral is even. = 256 3 2 0 π 2 sin 0 θ cos 4 θ d θ = 128 3 2 B ( 1 2 , 5 2 ) B ( m , n ) is the beta function. = 128 3 2 Γ ( 1 2 ) Γ ( 5 2 ) Γ ( 3 ) Γ ( n ) is the gamma function. = 128 3 2 π 3 2 1 2 Γ ( 1 2 ) 2 ! = 16 π 2 35.543 \begin{aligned} I & = \int_{-2}^2 \int_{-\sqrt{\frac {4-x^2}2}}^{\sqrt{\frac {4-x^2}2}} \int_{x^2+3y^2}^{8-x^2-y^2} dz \ dy \ dx \\ & = \int_{-2}^2 \int_{-\sqrt{\frac {4-x^2}2}}^{\sqrt{\frac {4-x^2}2}} z \ \bigg|_{x^2+3y^2}^{8-x^2-y^2} dy \ dx \\ & = \int_{-2}^2 \int_{-\sqrt{\frac {4-x^2}2}}^{\sqrt{\frac {4-x^2}2}} 8-2x^2-4y^2 \ dy \ dx \\ & = \int_{-2}^2 (8-2x^2)y- \frac {4y^3}3 \ \bigg|_{-\sqrt{\frac {4-x^2}2}}^{\sqrt{\frac {4-x^2}2}} \ dx \\ & = \int_{-2}^2 (8-2x^2)\cdot 2 \left(\frac {4-x^2}2 \right)^\frac 12 - \frac 43\cdot 2 \left(\frac {4-x^2}2 \right)^\frac 32 \ dx \\ & = \int_{-2}^2 8 \left(\frac {4-x^2}2 \right)^\frac 32 - \frac 83 \left(\frac {4-x^2}2 \right)^\frac 32 \ dx \\ & = \int_{-2}^2 \frac {16}3 \left(\frac {4-x^2}2 \right)^\frac 32 \ dx \\ & = \int_{-2}^2 \frac {64}{3\sqrt 2} \left({\color{#3D99F6}1-\frac {x^2}4} \right)^\frac 32 \ dx & \small \color{#3D99F6} \text {Let } \sin \theta = \frac x2, \ dx = 2\cos \theta \ d \theta \\ & = \frac {128}{3\sqrt 2} \int_{-\frac \pi 2}^\frac \pi 2 {\color{#3D99F6}\cos^4 \theta} \ d \theta & \small \color{#3D99F6} \text{The integral is even.} \\ & = \frac {\color{#3D99F6}256}{3\sqrt 2} \int_{\color{#3D99F6}0}^\frac \pi 2 \sin^0 \theta \ \cos^4 \theta \ d \theta \\ & = \frac {128}{3\sqrt 2} B \left(\frac 12, \frac 52 \right) & \small \color{#3D99F6} B(m,n) \text{ is the beta function.} \\ & = \frac {128}{3\sqrt 2} \cdot \frac {\Gamma \left(\frac 12 \right)\Gamma \left(\frac 52 \right)}{\Gamma \left(3 \right)} & \small \color{#3D99F6} \Gamma (n) \text{ is the gamma function.} \\ & = \frac {128}{3\sqrt 2} \cdot \frac {\sqrt \pi \cdot \frac 32 \cdot \frac 12 \Gamma \left(\frac 12 \right)}{2!} \\ & = \frac {16 \pi}{\sqrt 2} \approx \boxed{35.543} \end{aligned}


Reference:

Mark Hennings
Dec 15, 2016

The integral is equal to I = x 2 + 2 y 2 4 ( 8 2 x 2 4 y 2 ) d x d y = 2 x 2 + 2 y 2 4 ( 4 x 2 2 y 2 ) d x d y = 2 X 2 + Y 2 4 ( 4 X 2 Y 2 ) d X d Y = 2 0 2 r d r 0 2 π ( 4 r 2 ) d θ = 2 π 2 0 2 ( 4 r r 3 ) d r = 2 π 2 [ 2 r 2 1 4 r 4 ] 0 2 = 8 π 2 \begin{aligned} I & = \iint_{x^2 + 2y^2 \le 4} (8 - 2x^2 - 4y^2)\,dx\,dy \; = \; 2\iint_{x^2 + 2y^2 \le 4}(4 - x^2 - 2y^2)\,dx\,dy \\ & = \sqrt{2}\iint_{X^2+Y^2 \le 4} (4 - X^2 - Y^2)\,dX\,dY \; = \; \sqrt{2}\int_0^2 r\,dr \int_0^{2\pi} (4 - r^2)\,d\theta \\ & = 2\pi\sqrt{2}\int_0^2 (4r - r^3)\,dr \; = \; 2\pi\sqrt{2}\Big[2r^2 - \tfrac14r^4\Big]_0^2 \; = \; 8\pi\sqrt{2} \end{aligned} making the answer 35.543063505 \boxed{35.543063505} . Here we have first performed the integration with respect to z z , recognised what is left as the integral over a region in R 2 \mathbb{R}^2 , introduced a change of variables X = x X = x , Y = y 2 Y = y\sqrt{2} to convert the region of integration to a circle, and then introduced polar coordinates r , θ r,\theta to complete the integral.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...