Christmas Problems: No.6

Algebra Level 3

We can observe that 5 a 2 + 5 b 2 + 5 c 2 + 5 d 2 + 5 e 2 = ( a + b + c + d + e ) 2 5{ a }^{ 2 }+5{ b }^{ 2 }+{ 5c }^{ 2 }+{ 5d }^{ 2 }+{ 5e }^{ 2 }=(a+b+c+d+e)^{ 2 } is always true when a = b = c = d = e a=b=c=d=e .

True or False?

There is a set of solutions ( a , b , c , d , e ) (a,b,c,d,e) which only contains distinct real numbers that satisfy the above equation.

False True

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Kok Hao
Dec 29, 2017

Relevant wiki: Titu's Lemma

5 a 2 + 5 b 2 + 5 c 2 + 5 d 2 + 5 e 2 = ( a + b + c + d + e ) 2 5{ a }^{ 2 }+5{ b }^{ 2 }+{ 5c }^{ 2 }+{ 5d }^{ 2 }+{ 5e }^{ 2 }=(a+b+c+d+e)^{ 2 }

( a 2 + b 2 + c 2 + d 2 + e 2 ) = ( a + b + c + d + e ) 2 5 { (a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 }+{ d }^{ 2 }+{ e }^{ 2 })=\frac { (a+b+c+d+e)^{ 2 } }{ 5 }

( a 2 1 + b 2 1 + c 2 1 + d 2 1 + e 2 1 ) = ( a + b + c + d + e ) 2 1 + 1 + 1 + 1 + 1 (\frac { { a }^{ 2 } }{ 1 } +\frac { { b }^{ 2 } }{ 1 } +\frac { { c }^{ 2 } }{ 1 } +\frac { { d }^{ 2 } }{ 1 } +\frac { { e }^{ 2 } }{ 1 } )=\frac { (a+b+c+d+e)^{ 2 } }{ 1+1+1+1+1 }

This looks like Titu's lemma, which states that

a 1 b 1 + a 2 b 2 + . . . . . . + a n b n ( a 1 + a 2 + . . . . . . + a n ) 2 b 1 + b 2 + . . . . . . + b n \frac { { a }_{ 1 } }{ { b }_{ 1 } } +\frac { { a }_{ 2 } }{ { b }_{ 2 } } +......+\frac { { a }_{ n } }{ { b }_{ n } } \ge \frac { ({ a }_{ 1 }+{ a }_{ 2 }+......+{ a }_{ n })^{ 2 } }{ { b }_{ 1 }+{ b }_{ 2 }+......+{ b }_{ n } } , with equality happening at a 1 b 1 = a 2 b 2 = . . . . . . = a n b n \frac { { a }_{ 1 } }{ { b }_{ 1 } } =\frac { { a }_{ 2 } }{ { b }_{ 2 } } =......=\frac { { a }_{ n } }{ { b }_{ n } } .

Since all integers a a , b b , c c , d d and e e must be the same for equality to happen, there are no sets which have 5 distinct real numbers that satisfy the equation.

Note: You can do Cauchy Schwarz directly:

( 1 + 1 + 1 + 1 + 1 ) ( a 2 + b 2 + c 2 + d 2 + e 2 ) ( a + b + c + d + e ) 2 ( 1 + 1 + 1 + 1 + 1 ) ( a^2 + b^2 + c^2 + d^2 + e^2 ) \geq ( a + b + c + d + e) ^ 2

(Yes, I know that they are equivalent. I am talking about the "form" of the inequality.)

Calvin Lin Staff - 3 years, 5 months ago

Log in to reply

Thank you for the tip although I don't know how to apply this inequality in problems.

Kok Hao - 3 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...