Christmas Questions: No. 4

What is the smallest positive integer n n such that satisfies the following equation?

2017201 8 2019 n 0 (mod 2019) \large 20172018^{2019}-n \equiv 0 \text{ (mod 2019)}


The answer is 1752.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Dec 26, 2017

Let N = 2017201 8 2019 N=20172018^{2019} . We need to find n = N m o d 2019 n = N \bmod 2019 . We note that both the sum of digits of 20172018 and 2019 are divisible by 3. Therefore, the two numbers are multiples of 3 and are not coprime integers. We have to consider the factors of 2019 separately using the Chinese remainder theorem. 2019 = 3 × 673 2019 = 3\times 673 has only two prime factors.

Consider factor 3: N = 2017201 8 2019 0 (mod 3) N = 20172018^{2019} \equiv 0 \text{ (mod 3)}

Consider factor 673:

N 2017201 8 2019 m o d ϕ ( 673 ) (mod 673) Since gcd ( 20172018 , 673 ) = 1 , Euler’s theorem applies. 2017201 8 2019 m o d 672 (mod 673) Euler’s totient function ϕ ( 673 ) = 672 2017201 8 3 (mod 673) ( 20192019 20001 ) 3 (mod 673) ( 20001 ) 3 (mod 673) ( 20190 + 189 ) 3 (mod 673) 18 9 3 (mod 673) 189 ( 35721 ) (mod 673) 18 9 2 = 35721 189 ( 33650 + 2071 ) (mod 673) 673 × 50 = 33650 189 ( 52 ) (mod 673) 2071 2019 = 52 9828 (mod 673) 406 (mod 673) \begin{aligned} N & \equiv 20172018^{\color{#3D99F6} 2019 \bmod \phi(673)} \text{ (mod 673)} & \small \color{#3D99F6} \text{Since }\gcd (20172018, 673) = 1 \text{, Euler's theorem applies.} \\ & \equiv 20172018^{\color{#3D99F6} 2019 \bmod 672} \text{ (mod 673)} & \small \color{#3D99F6} \text{Euler's totient function }\phi(673) =672 \\ & \equiv 20172018^{\color{#3D99F6} 3} \text{ (mod 673)} \\ & \equiv (20192019-20001)^3 \text{ (mod 673)} \\ & \equiv (-20001)^3 \text{ (mod 673)} \\ & \equiv (-20190+189)^3 \text{ (mod 673)} \\ & \equiv 189^3 \text{ (mod 673)} \\ & \equiv 189({\color{#3D99F6}35721}) \text{ (mod 673)} & \small \color{#3D99F6} 189^2 = 35721 \\ & \equiv 189({\color{#3D99F6}33650}+2071) \text{ (mod 673)} & \small \color{#3D99F6} 673 \times 50 = 33650 \\ & \equiv 189({\color{#3D99F6}52}) \text{ (mod 673)} & \small \color{#3D99F6} 2071-2019=52 \\ & \equiv 9828 \text{ (mod 673)} \\ & \equiv 406 \text{ (mod 673)} \end{aligned}

Therefore,

N 673 k + 406 where k is an integer. 673 k + 406 0 (mod 3) k + 1 0 (mod 3) k 1 2 (mod 3) N 673 k + 406 1752 (mod 2019) \begin{aligned} N & \equiv 673k + 406 & \small \color{#3D99F6} \text{where }k \text{ is an integer.} \\ \implies 673k + 406 & \equiv 0 \text{ (mod 3)} \\ k + 1 & \equiv 0 \text{ (mod 3)} \\ k & \equiv -1 \equiv 2 \text{ (mod 3)} \\ \implies N & \equiv 673k + 406 \\ & \equiv \boxed{1752} \text{ (mod 2019)} \end{aligned}

Brilliant solution! Thank you for posting this.

Kok Hao - 3 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...