Christmas Streak 01/88: EINS + EINS + EINS + EINS = VIER!

Logic Level 2

In a cryptogram, each symbol represents a distinct, non-negative, single digit, and all leading digits are non-zero.

Solve the cryptogram below, and submit your answer as the 4-digit integer V I E R . \overline{VIER}. E I N S E I N S E I N S + E I N S V I E R {\begin{array}{cccccc} && &\color{#D61F06}E&\color{#EC7300}I&\color{#20A900}N&\color{#3D99F6}S \\ && &\color{#D61F06}E&\color{#EC7300}I&\color{#20A900}N&\color{#3D99F6}S \\ && &\color{#D61F06}E&\color{#EC7300}I&\color{#20A900}N&\color{#3D99F6}S \\ +&& &\color{#D61F06}E&\color{#EC7300}I&\color{#20A900}N&\color{#3D99F6}S \\ \hline && &\color{#BA33D6}V&\color{#EC7300}I&\color{#D61F06}E&\color{#E81990}R \end{array}}

Note: In German, eins means one and vier means four. So this cryptogram is "doubly true": 1+1+1+1=4.


This problem is a part of <Christmas Streak 2017> series .


The answer is 5316.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Boi (보이)
Sep 29, 2017

1 + 1 + 1 + 1 = 4 , 2 + 2 + 2 + 2 = 8 , 3 + 3 + 3 + 3 = 12 , 4 + 4 + 4 + 4 = 16 , 5 + 5 + 5 + 5 = 20 , 6 + 6 + 6 + 6 = 24 , 7 + 7 + 7 + 7 = 28 , 8 + 8 + 8 + 8 = 32 , 9 + 9 + 9 + 9 = 36. 1+1+1+1=4,~2+2+2+2=8,~3+3+3+3=12,~4+4+4+4=16,~5+5+5+5=20, \\ \\ 6+6+6+6=24,~7+7+7+7=28,~8+8+8+8=32,~9+9+9+9=36.

Since the carryover cannot be bigger than 3 , 3, and from I + I + I + I + carryover tenth I ( m o d 10 ) , I+I+I+I+\text{carryover}_{\text{tenth}}\equiv I \pmod{10},

I 1 , 2 , 4 , 5 , 7 , 8 I = 0 , 3 , 6 , 9. I\neq 1,~2,~4,~5,~7,~8~\Rightarrow~I=0,~3,~6,~9.


2 I N S 2 I N S 2 I N S + 2 I N S V I 2 R \large {\begin{array}{cccccc} && &\color{#D61F06}2&\color{#EC7300}I&\color{#20A900}N&\color{#3D99F6}S \\ && &\color{#D61F06}2&\color{#EC7300}I&\color{#20A900}N&\color{#3D99F6}S \\ && &\color{#D61F06}2&\color{#EC7300}I&\color{#20A900}N&\color{#3D99F6}S \\ +&& &\color{#D61F06}2&\color{#EC7300}I&\color{#20A900}N&\color{#3D99F6}S \\ \hline && &\color{#BA33D6}V&\color{#EC7300}I&\color{#D61F06}2&\color{#E81990}R \end{array}}

E = 1 or 2. E=1~\text{or}~2.

If E = 2 , E=2, then the carryover from the hundredth digit cannot be bigger than 1. 1.

Since I 1 , 2 , 4 , I\neq1,~2,~4, the only possible values for I I are 0 0 or 3. 3.

I = 0 ) I=0) Then, the carryover from the tenth digit must be 0. N = 1 N=1 doesn't satisfy the tenth-digit condition, and N = 0 , 2 N=0,~2 is impossible, therefore I 0. I\neq0.

I = 3 ) I=3) Then, the carryover from the tenth digit must be 1. N = 4 N=4 doesn't satisfy the tenth-digit condition, and N = 3 N=3 is impossible, therefore I 3. I\neq3.

This is a contradiction, therefore, E = 1. E=1.


1 I N S 1 I N S 1 I N S + 1 I N S V I 1 R \large {\begin{array}{cccccc} && &\color{#D61F06}1&\color{#EC7300}I&\color{#20A900}N&\color{#3D99F6}S \\ && &\color{#D61F06}1&\color{#EC7300}I&\color{#20A900}N&\color{#3D99F6}S \\ && &\color{#D61F06}1&\color{#EC7300}I&\color{#20A900}N&\color{#3D99F6}S \\ +&& &\color{#D61F06}1&\color{#EC7300}I&\color{#20A900}N&\color{#3D99F6}S \\ \hline && &\color{#BA33D6}V&\color{#EC7300}I&\color{#D61F06}1&\color{#E81990}R \end{array}}

If I = 0 , I=0, then the carryover from the tenth digit is 0. This is impossible because N N needs to be 1 or 2, but the tenth-digit condition cannot be satisfied.

If I = 6 , I=6, then the carryover from the hundredth digit is 2. And then V = 6. V=6. Nope,

If I = 9 , I=9, then the carryover from the hundredth digit is 3 ( V = 7 ) (\Rightarrow~V=7) and the carryover from the tenth digit is also 3. This is impossible because N N needs to be 8 or 9, but the tenth-digit condition cannot be satisfied.

Therefore, I = 3. I=3. Then, V = 5. V=5.


1 3 N S 1 3 N S 1 3 N S + 1 3 N S 5 3 1 R \large {\begin{array}{cccccc} && &\color{#D61F06}1&\color{#EC7300}3&\color{#20A900}N&\color{#3D99F6}S \\ && &\color{#D61F06}1&\color{#EC7300}3&\color{#20A900}N&\color{#3D99F6}S \\ && &\color{#D61F06}1&\color{#EC7300}3&\color{#20A900}N&\color{#3D99F6}S \\ +&& &\color{#D61F06}1&\color{#EC7300}3&\color{#20A900}N&\color{#3D99F6}S \\ \hline && &\color{#BA33D6}5&\color{#EC7300}3&\color{#D61F06}1&\color{#E81990}R \end{array}}

N = 4 N=4 doesn't satisfy the tenth-digit condition, whereas N = 3 N=3 is prohibited by I = 3. I=3.

So we figure that N = 2. N=2. Then S S needs to create a carryover of 3. S = 8 S=8 would create R = 2 , R=2, which is prohibited by N = 2. N=2.

So, S = 9 , S=9, and R = 6. R=6.


1 3 2 9 1 3 2 9 1 3 2 9 + 1 3 2 9 5 3 1 6 \large {\begin{array}{cccccc} && &\color{#D61F06}1&\color{#EC7300}3&\color{#20A900}2&\color{#3D99F6}9 \\ && &\color{#D61F06}1&\color{#EC7300}3&\color{#20A900}2&\color{#3D99F6}9 \\ && &\color{#D61F06}1&\color{#EC7300}3&\color{#20A900}2&\color{#3D99F6}9 \\ +&& &\color{#D61F06}1&\color{#EC7300}3&\color{#20A900}2&\color{#3D99F6}9 \\ \hline && &\color{#BA33D6}5&\color{#EC7300}3&\color{#D61F06}1&\color{#E81990}6 \end{array}}

Therefore, the answer is 5316 . \boxed{5316}.

FYI The problem would "make more sense" if you also explain that these are german words for one and four.

Calvin Lin Staff - 3 years, 8 months ago

Log in to reply

Added that to the question!

Boi (보이) - 3 years, 8 months ago

Please can you edit the question, to further reinforce if the usual rules of cryptograms apply. E.g. do the letters all represent distinct values?, can the letters equal 0?

Stephen Mellor - 3 years, 8 months ago

Log in to reply

If not stated otherwise, a cryptogram follows these rules:

  • Each symbol represents a distinct single non-negative digit.
  • All leading digits are non-zero.

Though surely, I added the details to clarify.

Boi (보이) - 3 years, 8 months ago

Log in to reply

Just to make sure that other people did not have the same doubts as I

Stephen Mellor - 3 years, 8 months ago

why (1328 + 1328 + 1328 + 1328 = 5312)

is not an answer to the question?

Avinash Ram - 3 years, 8 months ago

Log in to reply

What is the value of N?
What is the value of R?

Note that "each symbol represents a distinct, non-negative, single digit", which is the typical rules of cryptograms.

Calvin Lin Staff - 3 years, 8 months ago

A very exquisite solution! I just done it through experiment!

Ong Zi Qian - 3 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...