Christmas Streak 02/88: F F ive F F ractions = N = N atural N N umber

a , b , c , d , a,~b,~c,~d, and 1 a + 1 + 1 b + 1 + 1 c + 1 + 1 d + 1 1 ( a + 1 ) ( b + 1 ) ( c + 1 ) ( d + 1 ) \dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}+\dfrac{1}{d+1}-\dfrac{1}{(a+1)(b+1)(c+1)(d+1)} are all natural numbers.

Sum up all the possible values for max ( a , b , c , d ) . \text{max}(a,~b,~c,~d).


Notation: max ( x 1 , x 2 , x 3 , , x n ) \text{max}(x_1,~x_2,~x_3,~\cdots,~x_n) denotes the maximum value among all the elements in the function.

This problem is a part of <Christmas Streak 2017> series .


The answer is 52.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Boi (보이)
Sep 30, 2017

Let a + 1 = α , b + 1 = β , c + 1 = γ a+1=\alpha,~b+1=\beta,~c+1=\gamma and d + 1 = δ . d+1=\delta.

Then, without losing generality we can set α β γ δ > 1. \alpha\ge\beta\ge\gamma\ge\delta>1.

1 α + 1 β + 1 γ + 1 δ 1 α β γ δ = α β γ + β γ δ + γ δ α + δ α β 1 α β γ δ = n . \dfrac{1}{\alpha}+\dfrac{1}{\beta}+\dfrac{1}{\gamma}+\dfrac{1}{\delta}-\dfrac{1}{\alpha\beta\gamma\delta} \\\\ =\dfrac{\alpha\beta\gamma+\beta\gamma\delta+\gamma\delta\alpha+\delta\alpha\beta-1}{\alpha\beta\gamma\delta}=n.

α β γ δ n = α β γ + β γ δ + γ δ α + δ α β 1 < 4 α β γ . \alpha\beta\gamma\delta n=\alpha\beta\gamma+\beta\gamma\delta+\gamma\delta\alpha+\delta\alpha\beta-1<4\alpha\beta\gamma.

Therefore δ n < 4 , \delta n<4, from which we can infer that n = 1 , δ = 2 , 3. n=1,~\delta=2,~3.


If δ = 3 , \delta=3,

3 α β γ = α β γ + 3 ( α β + β γ + γ α ) 1 3\alpha\beta\gamma=\alpha\beta\gamma+3(\alpha\beta+\beta\gamma+\gamma\alpha)-1

2 α β γ = 3 ( α β + β γ + γ α ) 1 < 9 α β 2\alpha\beta\gamma=3(\alpha\beta+\beta\gamma+\gamma\alpha)-1<9\alpha\beta

Then 3 γ < 9 2 . 3\le\gamma<\dfrac{9}{2}. But then since 2 α β γ 2\alpha\beta\gamma is not a multiple of 3, γ = 4. \gamma=4.

8 α β = 3 ( α β + 4 α + 4 β ) 1 , 5 α β = 12 ( α + β ) 1 < 24 α 8\alpha\beta=3(\alpha\beta+4\alpha+4\beta)-1,~5\alpha\beta=12(\alpha+\beta)-1<24\alpha

Then 4 β < 24 5 , 4\le \beta<\dfrac{24}{5}, but if β = 4 , \beta=4, 5 α β 5\alpha\beta is a multiple of 4 , 4, which clearly violates 5 α β = 12 ( α + β ) 1. 5\alpha\beta=12(\alpha+\beta)-1.

Therefore this is not possible.


Then let δ = 2. \delta=2.

2 α β γ = α β γ + 2 ( α β + β γ + γ α ) 1 2\alpha\beta\gamma=\alpha\beta\gamma+2(\alpha\beta+\beta\gamma+\gamma\alpha)-1

α β γ = 2 ( α β + β γ + γ α ) 1 < 6 α β . \alpha\beta\gamma=2(\alpha\beta+\beta\gamma+\gamma\alpha)-1<6\alpha\beta.

2 γ < 6 , 2\le \gamma<6, but since α β γ \alpha\beta\gamma is not a multiple of 2, γ = 3 , 5. \gamma=3,~5.

If γ = 5 , \gamma=5, 5 α β = 2 ( α β + 5 α + 5 β ) 1 , 5\alpha\beta=2(\alpha\beta+5\alpha+5\beta)-1,

3 α β = 10 ( α + β ) 1 < 20 α . 3\alpha\beta=10(\alpha+\beta)-1<20\alpha.

5 β < 20 3 , 5\le\beta<\dfrac{20}{3}, but if β = 5 , 6 , \beta=5,~6, then 3 α β 3\alpha\beta is a multiple of 5 , 2 5,~2 respectively, which violates 3 α β = 10 ( α + β ) 1. 3\alpha\beta=10(\alpha+\beta)-1.

Therefore, γ 5. \gamma\neq5.

If γ = 3 , \gamma=3, 3 α β = 2 ( α β + 3 α + 3 β ) 1. 3\alpha\beta=2(\alpha\beta+3\alpha+3\beta)-1.

Then, α β 6 ( α + β ) = 1. \alpha\beta-6(\alpha+\beta)=-1.

Solving this most basic form of Diophantine equation, we get

( α 6 ) ( β 6 ) = 35. (\alpha-6)(\beta-6)=35.

Since α β 3 , \alpha\ge\beta\ge3, we get

( α , β ) = ( 41 , 7 ) , ( 13 , 11 ) . (\alpha,~\beta)=(41,~7),~(13,~11).

Therefore, max ( a , b , c , d ) = a = α 1 = 12 or 40. \text{max}(a,~b,~c,~d)=a=\alpha-1=12~\text{or}~40.

12 + 40 = 52 . \therefore~12+40=\boxed{52}.

Brilliant solution .. can you give some problems of this type?

Tarit Goswami - 3 years, 8 months ago

Log in to reply

Thanks!

And I... dunno if there's another problem like this. I'll reply when I find one! ^^

Boi (보이) - 3 years, 8 months ago

Log in to reply

thank you ..

Tarit Goswami - 3 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...