Christmas Streak 05/88: Too Many Terms!

Algebra Level 4

k = 1 399 20 + k k = 1 399 20 k \frac{\displaystyle\ \ \ \sum_{k=1}^{399} \sqrt{20+\sqrt{k}}\ \ \ }{\displaystyle \sum_{k=1}^{399} \sqrt{20-\sqrt{k}}}

Find the value of the expression above to three decimal places.


This problem is a part of <Christmas Streak 2017> series .


The answer is 2.414.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Boi (보이)
Oct 2, 2017

Note that 40 ± 2 n = 20 + 400 n ± 20 400 n . \sqrt{40\pm 2\sqrt{n}}=\sqrt{20+\sqrt{400-n}}\pm\sqrt{20-\sqrt{400-n}}.

k = 1 399 20 + k k = 1 399 20 k = k = 1 399 40 + 2 k k = 1 399 40 2 k = k = 1 399 ( 20 + 400 n + 20 400 n ) k = 1 399 ( 20 + 400 n 20 400 n ) = k = 1 399 ( 20 + n + 20 n ) k = 1 399 ( 20 + n 20 n ) Note that n and 400 n are symmetric when n = 1 , 2 , 3 , , 399. \begin{aligned} &\frac{\displaystyle \sum_{k=1}^{399} \sqrt{20+\sqrt{k}}}{\displaystyle \sum_{k=1}^{399} \sqrt{20-\sqrt{k}}} \\\\ & = \frac{\displaystyle \sum_{k=1}^{399} \sqrt{40+2\sqrt{k}}}{\displaystyle \sum_{k=1}^{399} \sqrt{40-2\sqrt{k}}} \\\\ & = \frac{\displaystyle \sum_{k=1}^{399} \left(\sqrt{20+\sqrt{400-n}}+\sqrt{20-\sqrt{400-n}}\right)}{\displaystyle \sum_{k=1}^{399} \left(\sqrt{20+\sqrt{400-n}}-\sqrt{20-\sqrt{400-n}}\right)} \\\\ & = \frac{\displaystyle \sum_{k=1}^{399} \left(\sqrt{20+\sqrt{n}}+\sqrt{20-\sqrt{n}}\right)}{\displaystyle \sum_{k=1}^{399} \left(\sqrt{20+\sqrt{n}}-\sqrt{20-\sqrt{n}}\right)} && \small \color{#3D99F6} \text{Note that }n\text{ and }400-n\text{ are symmetric when }n=1,~2,~3,~\cdots,~399. \\\\ \end{aligned}

Let k = 1 399 20 + k = p \displaystyle \sum_{k=1}^{399} \sqrt{20+\sqrt{k}}=p and k = 1 399 20 k = q . \displaystyle \sum_{k=1}^{399} \sqrt{20-\sqrt{k}}=q.

Then, from above,

p q = p + q p q p 2 + 2 p q q 2 = 0 ( p q ) 2 + 2 ( p q ) 1 = 0 p q = 1 + 2 ( p > 0 , q > 0 ) \begin{aligned} & \frac{p}{q} =\frac{p+q}{p-q} \\\\ & p^2+2pq-q^2 =0 \\\\ & \left(\frac{p}{q}\right)^2+2\left(\frac{p}{q}\right)-1= 0 \\\\ & \frac{p}{q} = 1+\sqrt{2}~(\because~p>0,~q>0) \end{aligned}

Therefore, the original expression is equal to 1 + 2 = 2.414213562 2.414 . 1+\sqrt{2}=2.414213562\cdots\approx\boxed{2.414}.

Christian Daang
Oct 18, 2017

I just did again,

0 399 20 + x 0 399 20 x \displaystyle \dfrac{\int_0^{399} \sqrt{20 + \sqrt{x}}}{\int_0^{399} \sqrt{20 - \sqrt{x}}} and I obtained 2.407851555085965002023512067819406583363069582927281754428 . XD

Anyways. Nice solution H.M. :D

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...