Christmas Streak 07/88: VINGT + CINQ + CINQ = TRENTE!

Logic Level 3

In a cryptogram, each symbol represents a distinct, non-negative, single digit, and all leading digits are non-zero.

Solve the cryptogram below, and submit your answer as the 5-digit integer V I N G T . \overline{VINGT}.

V I N G T C I N Q + C I N Q T R E N T E \begin{array}{cccccccc} &&&\color{#D61F06}V&\color{#EC7300}I&\color{#CEBB00}N&\color{#20A900}G&\color{#3D99F6}T \\ &&&&\color{#69047E}C&\color{#EC7300}I&\color{#CEBB00}N&\color{#E81990}Q \\ +&&&&\color{#69047E}C&\color{#EC7300}I&\color{#CEBB00}N&\color{#E81990}Q \\ \hline &&\color{#3D99F6}T&\color{#624F41}R&\color{#BBBBBB}E&\color{#CEBB00}N&\color{#3D99F6}T&\color{#BBBBBB}E \end{array}

Note: In French, vingt means twenty, cinq means five, and trente means thirty. So this cryptogram is "doubly true": 20+5+5=30.


This problem is a part of <Christmas Streak 2017> series .


The answer is 94851.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Boi (보이)
Oct 4, 2017

Firstly, it's clear that T = 1 T=1 and R = 0. R=0.

V I N G 1 C I N Q + C I N Q 1 0 E N 1 E \begin{array}{cccccccc} &&&\color{#D61F06}V&\color{#EC7300}I&\color{#CEBB00}N&\color{#20A900}G&\color{#3D99F6}1 \\ &&&&\color{#69047E}C&\color{#EC7300}I&\color{#CEBB00}N&\color{#E81990}Q \\ +&&&&\color{#69047E}C&\color{#EC7300}I&\color{#CEBB00}N&\color{#E81990}Q \\ \hline &&\color{#3D99F6}1&\color{#624F41}0&\color{#BBBBBB}E&\color{#CEBB00}N&\color{#3D99F6}1&\color{#BBBBBB}E \end{array}


carryover tenth + N + I + I = { N + 10 I = 4 , 5 N + 20 I = 9 \text{carryover}_\text{tenth}+N+I+I = \cases{\begin{aligned} N + 10 & \Rightarrow ~ I=4,~5 \\ N + 20 & \Rightarrow ~ I=9 \end{aligned}}

Then if I = 9 , I=9, V = 8 V=8 must be the case.

8 9 N G 1 C 9 N Q + C 9 N Q 1 0 E N 1 E \begin{array}{cccccccc} &&&\color{#D61F06}8&\color{#EC7300}9&\color{#CEBB00}N&\color{#20A900}G&\color{#3D99F6}1 \\ &&&&\color{#69047E}C&\color{#EC7300}9&\color{#CEBB00}N&\color{#E81990}Q \\ +&&&&\color{#69047E}C&\color{#EC7300}9&\color{#CEBB00}N&\color{#E81990}Q \\ \hline &&\color{#3D99F6}1&\color{#624F41}0&\color{#BBBBBB}E&\color{#CEBB00}N&\color{#3D99F6}1&\color{#BBBBBB}E \end{array}

Since we need a carryover of 2 2 to the ten thousandth digit, C = 5 , 6 , 7. C=5,~6,~7.

If C = 5 , C=5, then E = 1. E=1. Nope.

If C = 6 , C=6, then E = 3. E=3. Then Q = 6. Q=6. Nope.

If C = 7 , C=7, then E = 5. E=5. Then Q = 2. Q=2. From G + N + N 1 ( m o d 10 ) , G+N+N\equiv 1\pmod{10}, we note that G G is odd. Therefore G = 3. G=3. But then, we can't create a carryover of 2 2 from the tenth digits where we assumed that carryover tenth = 2 \text{carryover}_\text{tenth}=2 when we set I = 9. I=9.


V I N G 1 C I N Q + C I N Q 1 0 E N 1 E \begin{array}{cccccccc} &&&\color{#D61F06}V&\color{#EC7300}I&\color{#CEBB00}N&\color{#20A900}G&\color{#3D99F6}1 \\ &&&&\color{#69047E}C&\color{#EC7300}I&\color{#CEBB00}N&\color{#E81990}Q \\ +&&&&\color{#69047E}C&\color{#EC7300}I&\color{#CEBB00}N&\color{#E81990}Q \\ \hline &&\color{#3D99F6}1&\color{#624F41}0&\color{#BBBBBB}E&\color{#CEBB00}N&\color{#3D99F6}1&\color{#BBBBBB}E \end{array}

This is impossible, so I = 4 , 5. I=4,~5.

Note that E E is an odd number: 1 + Q + Q E ( m o d 10 ) . 1+Q+Q\equiv E\pmod{10}.

Since carryover hundredth + I + C + C E ( m o d 10 ) , \text{carryover}_{\text{hundredth}} + I+C+C\equiv E \pmod{10}, we see that carryover hundredth + I \text{carryover}_{\text{hundredth}}+I must be odd.

Carryover from the hundredth digit is 1 , 1, as I = 4 , 5 I=4,~5 are the only possible options.

Then we know that I = 4. I=4.


V 4 N G 1 C 4 N Q + C 4 N Q 1 0 E N 1 E \begin{array}{cccccccc} &&&\color{#D61F06}V&\color{#EC7300}4&\color{#CEBB00}N&\color{#20A900}G&\color{#3D99F6}1 \\ &&&&\color{#69047E}C&\color{#EC7300}4&\color{#CEBB00}N&\color{#E81990}Q \\ +&&&&\color{#69047E}C&\color{#EC7300}4&\color{#CEBB00}N&\color{#E81990}Q \\ \hline &&\color{#3D99F6}1&\color{#624F41}0&\color{#BBBBBB}E&\color{#CEBB00}N&\color{#3D99F6}1&\color{#BBBBBB}E \end{array}

If V = 8 , V=8, then C = 9. C=9. Then E = 3 , Q = 6. E=3, Q=6. Again, we cannot create a carryover of 2 2 from the tenth digits. Impossible.

Therefore, V = 9. V=9.


9 4 N G 1 C 4 N Q + C 4 N Q 1 0 E N 1 E \begin{array}{cccccccc} &&&\color{#D61F06}9&\color{#EC7300}4&\color{#CEBB00}N&\color{#20A900}G&\color{#3D99F6}1 \\ &&&&\color{#69047E}C&\color{#EC7300}4&\color{#CEBB00}N&\color{#E81990}Q \\ +&&&&\color{#69047E}C&\color{#EC7300}4&\color{#CEBB00}N&\color{#E81990}Q \\ \hline &&\color{#3D99F6}1&\color{#624F41}0&\color{#BBBBBB}E&\color{#CEBB00}N&\color{#3D99F6}1&\color{#BBBBBB}E \end{array}

Then C = 3 , 5 , 6 , 7. C=3,~5,~6,~7.

C = 3 C=3 creates E = 1. E=1. Nope.

C = 5 C=5 creates E = 5. E=5. Nope.

C = 7 C=7 creates E = 9. E=9. Also nope.

Then C = 6 , C=6, leading to E = 7. E=7.


9 4 N G 1 6 4 N Q + 6 4 N Q 1 0 7 N 1 7 \begin{array}{cccccccc} &&&\color{#D61F06}9&\color{#EC7300}4&\color{#CEBB00}N&\color{#20A900}G&\color{#3D99F6}1 \\ &&&&\color{#69047E}6&\color{#EC7300}4&\color{#CEBB00}N&\color{#E81990}Q \\ +&&&&\color{#69047E}6&\color{#EC7300}4&\color{#CEBB00}N&\color{#E81990}Q \\ \hline &&\color{#3D99F6}1&\color{#624F41}0&\color{#BBBBBB}7&\color{#CEBB00}N&\color{#3D99F6}1&\color{#BBBBBB}7 \end{array}

Then N = 2 , 3 , 5 , 8. N=2,~3,~5,~8. None of 2 , 3 , 5 2,~3,~5 can create a carryover of 2 2 from the tenth digits, so N = 8. N=8.

Since Q = 3 , 8 Q=3,~8 from 1 + Q + Q 7 ( m o d 10 ) , 1+Q+Q\equiv 7\pmod{10}, we see that Q = 3. Q=3.

Then G = 2 , 5. G=2,~5. Plugging in the values shows that G = 5 G=5 is the answer.


9 4 8 5 1 6 4 8 3 + 6 4 8 3 1 0 7 8 1 7 \begin{array}{cccccccc} &&&\color{#D61F06}9&\color{#EC7300}4&\color{#CEBB00}8&\color{#20A900}5&\color{#3D99F6}1 \\ &&&&\color{#69047E}6&\color{#EC7300}4&\color{#CEBB00}8&\color{#E81990}3 \\ +&&&&\color{#69047E}6&\color{#EC7300}4&\color{#CEBB00}8&\color{#E81990}3 \\ \hline &&\color{#3D99F6}1&\color{#624F41}0&\color{#BBBBBB}7&\color{#CEBB00}8&\color{#3D99F6}1&\color{#BBBBBB}7 \end{array}

Therefore, the answer is 94851 . \boxed{94851}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...