Christmas Streak 11/88: Mathematicians, Coffee, and Theorems

Logic Level 3

Hungarian mathematician Erdős Paul once asserted: "A mathematician is a device for turning coffee into theorems."

Why don't we prove it mathematically?

Solve the cryptogram below, and submit your answer as the 7-digit integer T H E O R E M . \overline{\color{#3D99F6}T\color{#69047E}H\color{#20A900}E\color{#EC7300}O\color{#E81990}R\color{#20A900}E\color{#624F41}M}.

C O F F E E C O F F E E + C O F F E E T H E O R E M \begin{array}{ccccccccc} &&&\color{#D61F06}C&\color{#EC7300}O&\color{#CEBB00}F&\color{#CEBB00}F&\color{#20A900}E&\color{#20A900}E \\ &&&\color{#D61F06}C&\color{#EC7300}O&\color{#CEBB00}F&\color{#CEBB00}F&\color{#20A900}E&\color{#20A900}E \\ +&&&\color{#D61F06}C&\color{#EC7300}O&\color{#CEBB00}F&\color{#CEBB00}F&\color{#20A900}E&\color{#20A900}E \\ \hline &&\color{#3D99F6}T&\color{#69047E}H&\color{#20A900}E&\color{#EC7300}O&\color{#E81990}R&\color{#20A900}E&\color{#624F41}M \end{array}


In a cryptogram, each symbol represents a distinct, non-negative, single digit, and all leading digits are non-zero.

This problem is a part of <Christmas Streak 2017> series .


The answer is 2493597.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Boi (보이)
Oct 8, 2017

Look carefully into the last two digits. E E × 3 = ? E M . EE\times3=?EM. This is only satisfied by E = 9. E=9. Then M = 7. M=7.


C O F F 9 9 C O F F 9 9 + C O F F 9 9 T H 9 O R 9 7 \begin{array}{ccccccccc} &&&\color{#D61F06}C&\color{#EC7300}O&\color{#CEBB00}F&\color{#CEBB00}F&\color{#20A900}9&\color{#20A900}9 \\ &&&\color{#D61F06}C&\color{#EC7300}O&\color{#CEBB00}F&\color{#CEBB00}F&\color{#20A900}9&\color{#20A900}9 \\ +&&&\color{#D61F06}C&\color{#EC7300}O&\color{#CEBB00}F&\color{#CEBB00}F&\color{#20A900}9&\color{#20A900}9 \\ \hline &&\color{#3D99F6}T&\color{#69047E}H&\color{#20A900}9&\color{#EC7300}O&\color{#E81990}R&\color{#20A900}9&\color{#624F41}7 \end{array}

Since the carryover from the thousands digit is smaller than 3, we notice that

( O , carryover thousands ) = ( 3 , 0 ) , ( 6 , 1 ) , ( 9 , 2 ) . (O,~\text{carryover}_{\text{thousands}})=(3,~0),~(6,~1),~(9,~2).

However, since E = 9 , E=9, we know that O 9. O\neq9.


C 6 F F 9 9 C 6 F F 9 9 + C 6 F F 9 9 T H 9 6 R 9 7 \begin{array}{ccccccccc} &&&\color{#D61F06}C&\color{#EC7300}6&\color{#CEBB00}F&\color{#CEBB00}F&\color{#20A900}9&\color{#20A900}9 \\ &&&\color{#D61F06}C&\color{#EC7300}6&\color{#CEBB00}F&\color{#CEBB00}F&\color{#20A900}9&\color{#20A900}9 \\ +&&&\color{#D61F06}C&\color{#EC7300}6&\color{#CEBB00}F&\color{#CEBB00}F&\color{#20A900}9&\color{#20A900}9 \\ \hline &&\color{#3D99F6}T&\color{#69047E}H&\color{#20A900}9&\color{#EC7300}6&\color{#E81990}R&\color{#20A900}9&\color{#624F41}7 \end{array}

If O = 6 , O=6, then 3 F + carryover hundreds = 16. 3F+\text{carryover}_{\text{hundreds}}=16. So F = 4. F=4. Then R = 4. R=4. Nope.


C 3 F F 9 9 C 3 F F 9 9 + C 3 F F 9 9 T H 9 3 R 9 7 \begin{array}{ccccccccc} &&&\color{#D61F06}C&\color{#EC7300}3&\color{#CEBB00}F&\color{#CEBB00}F&\color{#20A900}9&\color{#20A900}9 \\ &&&\color{#D61F06}C&\color{#EC7300}3&\color{#CEBB00}F&\color{#CEBB00}F&\color{#20A900}9&\color{#20A900}9 \\ +&&&\color{#D61F06}C&\color{#EC7300}3&\color{#CEBB00}F&\color{#CEBB00}F&\color{#20A900}9&\color{#20A900}9 \\ \hline &&\color{#3D99F6}T&\color{#69047E}H&\color{#20A900}9&\color{#EC7300}3&\color{#E81990}R&\color{#20A900}9&\color{#624F41}7 \end{array}

If O = 3 , O=3, then 3 F + carryover hundreds = 3. 3F+\text{carryover}_{\text{hundreds}}=3. So F = 1. F=1. Then R = 5. R=5.


C 3 1 1 9 9 C 3 1 1 9 9 + C 3 1 1 9 9 T H 9 3 5 9 7 \begin{array}{ccccccccc} &&&\color{#D61F06}C&\color{#EC7300}3&\color{#CEBB00}1&\color{#CEBB00}1&\color{#20A900}9&\color{#20A900}9 \\ &&&\color{#D61F06}C&\color{#EC7300}3&\color{#CEBB00}1&\color{#CEBB00}1&\color{#20A900}9&\color{#20A900}9 \\ +&&&\color{#D61F06}C&\color{#EC7300}3&\color{#CEBB00}1&\color{#CEBB00}1&\color{#20A900}9&\color{#20A900}9 \\ \hline &&\color{#3D99F6}T&\color{#69047E}H&\color{#20A900}9&\color{#EC7300}3&\color{#E81990}5&\color{#20A900}9&\color{#624F41}7 \end{array}

Then T = 2 , T=2, since F = 1. F=1.

And since E = 9 E=9 and M = 7 , M=7, the only possible pair for ( C , H ) (C,~H) is ( 8 , 4 ) . (8,~4).


8 3 1 1 9 9 8 3 1 1 9 9 + 8 3 1 1 9 9 2 4 9 3 5 9 7 \begin{array}{ccccccccc} &&&\color{#D61F06}8&\color{#EC7300}3&\color{#CEBB00}1&\color{#CEBB00}1&\color{#20A900}9&\color{#20A900}9 \\ &&&\color{#D61F06}8&\color{#EC7300}3&\color{#CEBB00}1&\color{#CEBB00}1&\color{#20A900}9&\color{#20A900}9 \\ +&&&\color{#D61F06}8&\color{#EC7300}3&\color{#CEBB00}1&\color{#CEBB00}1&\color{#20A900}9&\color{#20A900}9 \\ \hline &&\color{#3D99F6}2&\color{#69047E}4&\color{#20A900}9&\color{#EC7300}3&\color{#E81990}5&\color{#20A900}9&\color{#624F41}7 \end{array}

Therefore, the answer is 2493597 \boxed{2493597}

Oh this is amusing!

Calvin Lin Staff - 3 years, 8 months ago

Log in to reply

Thank you! x'D

Boi (보이) - 3 years, 8 months ago

actually I did a bit of searching, it turns out it is miscredited; Erdos himself says it is a quote of Alfred Renyi.

André Hucek - 3 years, 7 months ago

Consider the last two columns of addition, we note that 3 E > 10 3E > 10 if not the sum digits of the last two columns are the same and not E M \overline{EM} . Therefore,

33 E = { 200 100 + 10 E + M where { b a denotes either a or b 23 E = { 200 100 + M Note that 4 E 9 \begin{aligned} 33E & = {\color{#3D99F6}\{_{200}^{100}} + 10E + M & \small \color{#3D99F6} \text{where }\{_b^a \text{ denotes either } a \text{ or } b \\ 23 E & = \{_{200}^{100} + M & \small \color{#3D99F6} \text{Note that }4 \le E \le 9 \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...