Christmas Streak 17/88: No Calculator Allowed!

The leading digit of 5 10000 5^{10000} is 5. How come, though? The explanation below explains the reason.

Find 100 A + B + C + 100 D + E . \lfloor 100{\color{#E81990}A}+{\color{#E81990}B}+{\color{#E81990}C}+100{\color{#E81990}D}+{\color{#E81990}E}\rfloor.


Take a common logarithm on 5 10000 . 5^{10000}. Then, log 5 10000 = 10000 log 5 A . \log 5^{10000}=10000\log 5\approx \color{#E81990}A.

Then 1 0 B < 5 10000 < 1 0 B + 1 . 10^{\color{#E81990}B}<5^{10000}<10^{{\color{#E81990}B}+1}. So, 5 10000 5^{10000} has C \color{#E81990}C digits.

Let's say that k 1 0 B < 5 10000 < ( k + 1 ) 1 0 B . k\cdot 10^{\color{#E81990}B}<5^{10000}<(k+1)\cdot 10^{\color{#E81990}B}. Since log 5 A 10000 \log 5\approx \dfrac{\color{#E81990}A}{10000} and log 6 D 10000 , \log 6\approx \dfrac{\color{#E81990}D}{10000}, we can infer that k = E . k=\color{#E81990}E.

Therefore, the leading digit of a C \color{#E81990}C -digit number 5 10000 5^{10000} is 5.


NEEDED INFORMATIONS:

  • Leading digit is the leftmost digit of a number. (e.g. the leading digit of 14789 is 1.)

  • The explanation should be calculating with log 2 0.30103 , log 3 0.47712. \log 2\approx 0.30103,~\log 3 \approx0.47712.

  • \lfloor\cdot\rfloor denotes the floor function .

This problem is a part of <Christmas Streak 2017> series .


The answer is 1491104.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Boi (보이)
Oct 14, 2017

Note that the explanation is assuming log 2 0.30103 \log 2\approx 0.30103 and log 3 0.47712. \log 3\approx 0.47712.

Take a common logarithm on 5 10000 . 5^{10000}. Then,

log 5 10000 = 10000 log 5 = 10000 ( log 10 2 ) = 10000 ( log 10 log 2 ) = 10000 ( 1 0.30103 ) 6989.7 \log 5^{10000} \\ =10000\log 5 \\ =10000\left(\log \dfrac{10}{2}\right) \\ =10000(\log 10-\log 2) \\ =10000(1-0.30103) \\ \approx {\color{#E81990}6989.7}

((((( 6989 < log 5 10000 < 6990. 6989<\log 5^{10000}<6990. Putting all sides on the exponential of 10, )))))

Then 1 0 6989 < 5 10000 < 1 0 6989 + 1 . 10^{\color{#E81990}6989}<5^{10000}<10^{{\color{#E81990}6989}+1}.

((((( Note that 1 0 6989 10^{6989} has 6990 digits and 1 0 6990 10^{6990} is the first number to have 6991 digits. )))))

So, 5 10000 5^{10000} has 6990 \color{#E81990}6990 digits.

Let's say that k 1 0 6989 < 5 10000 < ( k + 1 ) 1 0 6989 . k\cdot 10^{\color{#E81990}6989}<5^{10000}<(k+1)\cdot 10^{\color{#E81990}6989}.

((((( Taking a common logarithm on both sides, log k < 0.7 < log k + 1. \log k<0.7<\log k+1. )))))

log 5 6989.7 10000 \log 5 \approx \dfrac{\color{#E81990}6989.7}{10000} and log 6 = log 2 + log 3 0.30103 + 0.47712 = 0.77815 = 7781.5 10000 . \log 6=\log 2 + \log 3 \approx 0.30103+0.47712=0.77815=\dfrac{\color{#E81990}7781.5}{10000}.

We can infer that k = 5. k=\color{#E81990}5.

Therefore, the leading digit of a 6990 \color{#E81990}6990 -digit number 5 10000 5^{10000} is 5.


From above, A = 6989.7 , B = 6989 , C = 6990 , D = 7781.5 , E = 5. A=6989.7,~B=6989,~C=6990,~D=7781.5,~E=5.

100 A + B + C + 100 D + E = 698970 + 6989 + 6990 + 778150 + 5 = 1491104 . \lfloor 100{\color{#E81990}A}+{\color{#E81990}B}+{\color{#E81990}C}+100{\color{#E81990}D}+{\color{#E81990}E}\rfloor \\ = \lfloor 698970+6989+6990+778150+5 \rfloor = \boxed{1491104}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...