Christmas Streak 19/88: Three Variables In Two Equations

Geometry Level 5

Three reals α , β , γ \alpha,~\beta,~\gamma are between 0 and 2 π . 2\pi.

{ sin α + sin β cos γ = 1.5 cos α cos β + sin γ = 1 \cases{\sin\alpha +\sin\beta - \cos\gamma=1.5 \\\\ \cos\alpha - \cos\beta + \sin\gamma=1}

Find the value of 13 sin ( γ tan 1 ( 3 2 ) ) 2 cos ( α + β ) . \sqrt{13}\sin\left(\gamma-\tan^{-1}\left(\dfrac{3}{2}\right)\right)-2\cos(\alpha+\beta).


This problem is a part of <Christmas Streak 2017> series .


The answer is 2.25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Boi (보이)
Oct 17, 2017

{ sin α + sin β = 1.5 + cos γ cos α cos β = 1 sin γ \cases{\sin\alpha+\sin\beta=1.5+\cos\gamma \\\\ \cos\alpha-\cos\beta=1-\sin\gamma}

Square both sides to get

{ sin 2 α + sin 2 β + 2 sin α sin β = 2.25 + 3 cos γ + cos 2 γ cos 2 α + cos 2 β 2 cos α cos β = 1 2 sin γ + sin 2 γ \cases{\sin^2\alpha+\sin^2\beta+2\sin\alpha\sin\beta=2.25+3\cos\gamma+\cos^2\gamma \\\\ \cos^2\alpha+\cos^2\beta-2\cos\alpha\cos\beta=1-2\sin\gamma+\sin^2\gamma}

Now add them sides by sides.

( sin 2 α + cos 2 α ) + ( sin 2 β + cos 2 β ) ( 2 cos α cos β 2 sin α sin β ) = 3.25 + 3 cos γ 2 sin γ + ( sin 2 γ + cos 2 γ ) (\sin^2\alpha+\cos^2\alpha)+(\sin^2\beta+\cos^2\beta)-(2\cos\alpha\cos\beta-2\sin\alpha\sin\beta)=3.25+3\cos\gamma-2\sin\gamma+(\sin^2\gamma+\cos^2\gamma)

Move some stuffs around and we get

( 2 sin γ 3 cos γ ) ( 2 cos α cos β 2 sin α sin β ) = 2.25 (2\sin\gamma-3\cos\gamma)-(2\cos\alpha\cos\beta-2\sin\alpha\sin\beta)=2.25

Finally, using the fact that 2 sin γ 3 cos γ = 13 sin ( γ tan ( 3 2 ) ) 2\sin\gamma-3\cos\gamma=\sqrt{13}\sin\left(\gamma-\tan\left(\dfrac{3}{2}\right)\right) and 2 cos α cos β 2 sin α sin β = cos ( α + β ) , 2\cos\alpha\cos\beta-2\sin\alpha\sin\beta=\cos(\alpha+\beta),

13 sin ( x tan 1 ( 3 2 ) ) 2 cos ( α + β ) = 2.25 . \sqrt{13}\sin\left(x-\tan^{-1}\left(\dfrac{3}{2}\right)\right)-2\cos(\alpha+\beta)=\boxed{2.25}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...