Christmas Streak 32/88: Polynomial But Strange

Algebra Level 3

P ( x ) P(x) is a cubic polynomial, and for x = 1 , 2 , 3 , 4 , x=1,~2,~3,~4, P ( x ) = 1 1 + x + x 2 . P(x)=\frac{1}{1+x+x^2}.

For some positive coprime integers a a and b , b, P ( 5 ) = a b . P(5)=-\frac{a}{b}.

Find the value of a + b . a+b.


This problem is a part of <Christmas Streak 2017> series .


The answer is 94.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Boi (보이)
Oct 30, 2017

Employ the fact that P ( x + 1 ) P ( x ) P(x+1)-P(x) decreases the degree of a polynomial.

Let's calculate with a b b a \begin{array}{ccc} a&&b \\ &b-a&\end{array}

Then

P ( 1 ) = 1 3 P ( 2 ) = 1 7 P ( 3 ) = 1 13 P ( 4 ) = 1 21 P ( 5 ) = x 4 21 6 91 8 273 x 1 21 34 273 10 273 x 5 273 24 273 x 15 273 \begin{array}{ccccccccc} P(1)=\dfrac{1}{3}&&P(2)=\dfrac{1}{7}&&P(3)=\dfrac{1}{13}&&P(4)=\dfrac{1}{21}&&P(5)=x \\ &-\dfrac{4}{21}&&-\dfrac{6}{91}&&\dfrac{-8}{273}&&x-\dfrac{1}{21}& \\ &&\dfrac{34}{273}&&\dfrac{10}{273}&&x-\dfrac{5}{273}&& \\ &&&-\dfrac{24}{273}&&x-\dfrac{15}{273}&&& \\ \end{array}

Therefore P ( 5 ) = x = 9 273 = 3 91 . P(5)=x=-\dfrac{9}{273}=-\dfrac{3}{91}.

a + b = 94 . \therefore~a+b=\boxed{94}.

Krishna Karthik
Nov 20, 2019

Here is a different solution that I expect most people would have used;

Let the unknown cubic polynomial be of the form

C 1 x 3 + C 2 x 2 + C 3 x + C 4 C_1 x^3 + C_2 x^2+C_3 x+C_4

Using the next piece of information given, that when x = 1 , 2 , 3 , 4 , P ( x ) = 1 1 + x + x 2 x=1,2,3,4, P(x)=\large \frac{1}{1+x+x^2} , we can write the following equations:

For x = 1 x=1 ;

C 1 + C 2 + C 3 + C 4 = 1 1 + 1 + 1 2 C_1+C_2+C_3+C_4=\large \frac{1}{1+1+1^2}

For x = 2 x=2 ;

8 C 1 + 4 C 2 + 2 C 3 + C 4 = 1 1 + 2 + 2 2 8C_1+4C_2+2C_3+C_4=\large \frac{1}{1+2+2^2}

For x = 3 x=3 ;

27 C 1 + 9 C 2 + 3 C 3 + C 4 = 1 1 + 3 + 3 2 27C_1+9C_2+3C_3+C_4=\large \frac{1}{1+3+3^2}

And for x = 4 x=4 ;

64 C 1 + 16 C 2 + 4 C 3 + C 4 = 1 1 + 4 + 4 2 64C_1+16C_2+4C_3+C_4=\large \frac{1}{1+4+4^2} .

There we have it. 4 unique equations for 4 variables. We can now find the value of the coefficients of the cubic function by solving the system of linear equations above.

The solutions are;

C 1 = 4 273 , C 2 = 41 273 , C 3 = 7 13 , C 4 = 67 91 C_1=\large \frac{-4}{273} , C_2 = \large \frac{41}{273} , C_3 = \large \frac{-7}{13} , C_4 = \large \frac{67}{91}

If we find the value of P ( 5 ) P(5) for P ( x ) = 4 273 x 3 + 41 273 x 2 + 7 13 x + 67 91 P(x) = \large \frac{-4}{273} x^3 + \large \frac{41}{273} x^2 + \large \frac{-7}{13} x + \large \frac{67}{91} , we get:

3 91 \large \frac{-3}{91}

Therefore a + b = 3 + 91 = 94 a+b=3+91=\large \boxed{94}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...