Christmas Streak 42/88: A Weird Function

Calculus Level 5

f ( x ) = lim n k = 1 n ( 1 ) k 1 ( x 2 k 1 sin x ( 2 k 1 ) ! x 2 k cos x ( 2 k ) ! ) \large f(x)=\lim_{n\to\infty}\sum_{k=1}^{n} (-1)^{k-1}\left(\frac{x^{2k-1}\sin x}{(2k-1)!}-\frac{x^{2k}\cos x}{(2k)!} \right)

A function f ( x ) f(x) is definded as above. What is the value of 10000 0 1 f ( x ) 2 d x \displaystyle \left\lfloor 10000\int_{0}^{1}f(x)^2dx\right\rfloor ?

Notation: \lfloor\cdot\rfloor denotes the floor function .


This problem is a part of <Christmas Streak 2017> series .


The answer is 443.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Nov 22, 2017

f ( x ) = k = 1 ( 1 ) k 1 ( x 2 k 1 sin x ( 2 k 1 ) ! x 2 k cos x ( 2 k ) ! ) = k = 1 x k cos ( k π 2 x ) k ! By Euler’s formula: e i θ = cos θ + i sin θ = k = 1 x k ( e i ( k π 2 x ) ) k ! where ( z ) is the real part of z . = ( 1 e i x k = 1 ( x e i π 2 ) k k ! ) = ( 1 e i x k = 1 ( i x ) k k ! ) = ( 1 e i x ( e i x 1 ) ) Multiply up and down by e i x = ( 1 e i x ) = ( 1 cos x + i sin x ) = 1 cos x \begin{aligned} f(x) & = \sum_{k=1}^\infty (-1)^{k-1}\left(\frac {x^{2k-1}\sin x}{(2k-1)!} - \frac {x^{2k}\cos x}{(2k)!}\right) \\ & = \sum_{k=1}^\infty \frac{x^k\color{#3D99F6}\cos \left(\frac {k\pi}2 - x \right)}{k!} & \small \color{#3D99F6} \text{By Euler's formula: }e^{i\theta} = \cos \theta + i\sin \theta \\ & = \sum_{k=1}^\infty \frac{x^k\color{#3D99F6}\Re \left(e^{i\left(\frac {k\pi}2 - x\right)}\right)}{k!} & \small \color{#3D99F6} \text{where } \Re(z) \text{ is the real part of }z. \\ & = \Re \left(\frac 1{e^{ix}}\sum_{k=1}^\infty \frac{\left(xe^{\frac {i\pi} 2}\right)^k}{k!} \right) \\ & = \Re \left(\frac 1{e^{ix}}\sum_{k=1}^\infty \frac{\left(ix\right)^k}{k!} \right) \\ & = \Re \left(\frac 1{e^{ix}} \left(e^{ix}-1\right) \right) & \small \color{#3D99F6} \text{Multiply up and down by }e^{-ix} \\ & = \Re \left(1-e^{-ix} \right) \\ & = \Re \left(1-\cos x + i\sin x \right) \\ & = 1-\cos x \end{aligned}

Therefore,

I = 0 1 f ( x ) 2 d x = 0 1 ( 1 cos x ) 2 d x = 0 1 ( 1 2 cos x + cos 2 x ) d x = x 2 sin x + x 2 + sin 2 x 4 0 1 = 3 2 2 sin 1 + sin 2 4 0.044382387 \begin{aligned} I & = \int_0^1 f(x)^2 dx = \int_0^1 (1-\cos x)^2 dx = \int_0^1 (1-2\cos x + \cos^2 x) \ dx \\ & = x - 2\sin x + \frac x2 + \frac {\sin 2x}4 \bigg|_0^1 = \frac 32 - 2\sin 1 + \frac {\sin 2}4 \approx 0.044382387 \end{aligned}

10000 I = 443 \implies \lfloor 10000I\rfloor = \boxed{443}

Boi (보이)
Nov 10, 2017

First, notice that f ( 0 ) = 0. f(0)=0.

Use integration by parts for infinite times.

1 sin x d x = x sin x x ( cos x ) d x = x sin x 1 2 x 2 cos x 1 2 x 2 sin x d x = x sin x 1 2 x 2 cos x 1 3 ! x 3 sin x + 1 3 ! x 2 ( cos x ) d x = x sin x 1 2 ! x 2 cos x 1 3 ! x 3 sin x + 1 4 ! x 4 cos x + 1 4 ! x 4 sin x d x = 1 1 ! x sin x 1 2 ! x 2 cos x 1 3 ! x 3 sin x + 1 4 ! x 4 cos x + 1 5 ! x 5 sin x 1 6 ! x 6 cos x = n = 1 { ( 1 ) n 1 ( x 2 n 1 ( 2 n 1 ) ! sin x x 2 n ( 2 n ) ! cos x ) } = f ( x ) \begin{aligned}\int 1\cdot \sin x dx & = x\sin x - \int x(\cos x) dx \\ & = x\sin x - \frac{1}{2}x^2\cos x - \int \frac{1}{2}x^2\sin x dx \\ & = x\sin x - \frac{1}{2}x^2\cos x - \frac{1}{3!}x^3\sin x + \int \frac{1}{3!}x^2(\cos x) dx \\ & = x\sin x - \frac{1}{2!}x^2\cos x - \frac{1}{3!}x^3\sin x + \frac{1}{4!}x^4\cos x + \int \frac{1}{4!}x^4\sin x dx \\ & = \frac{1}{1!}x\sin x - \frac{1}{2!}x^2\cos x - \frac{1}{3!}x^3\sin x + \frac{1}{4!}x^4\cos x +\frac{1}{5!}x^5\sin x - \frac{1}{6!}x^6\cos x - \cdots \\ & = \sum_{n=1}^{\infty} \left\{(-1)^{n-1}\left(\frac{x^{2n-1}}{(2n-1)!}\cdot\sin x-\frac{x^{2n}}{(2n)!}\cdot\cos x\right)\right\} \\ & = f(x) \end{aligned}

Therefore f ( x ) = cos x + 1. ( f ( 0 ) = 0 ) f(x)=-\cos x + 1.~(\because f(0)=0)

And so 10000 0 1 f ( x ) 2 d x = 10000 1 4 ( 6 8 sin ( 1 ) + sin ( 2 ) ) = 443 . \displaystyle \left\lfloor 10000\int_{0}^{1}f(x)^2dx\right\rfloor = \left\lfloor10000\cdot\dfrac{1}{4}(6-8\sin(1)+\sin(2))\right\rfloor = \boxed{443}.

You have a sign problem in your first step (the derivative of sin(x) is cos(x), not -cos(x)). This changes the answer.

D G - 3 years, 7 months ago

Log in to reply

Oh, right! Sorry! I've editted the question!

Thank you~! ^^;

Boi (보이) - 3 years, 7 months ago

@H.M. 유 brillaint solution.

Ashutosh Sharma - 3 years, 4 months ago

Log in to reply

Thanks! ^^

Boi (보이) - 3 years, 4 months ago
Kelvin Hong
Jan 3, 2018

Just have to know the following identity:

s i n x = x x 3 3 ! + x 5 5 ! x 7 7 ! + . . . sinx = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + ... and c o s x = 1 x 2 2 ! + x 4 4 ! x 6 6 ! + . . . cosx = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + ...

Then expand the sum carefully, you'll get:

f ( x ) = s i n x ( s i n x ) + c o s x ( c o s x 1 ) = 1 c o s x f(x) = sinx(sinx) + cosx(cosx-1) = 1-cosx

Then do the integration, easily to get

10000 0 1 ( 1 c o s x ) d x = 443.8238709... 10000 \int_0^1 (1-cosx) dx = 443.8238709...

Get the floor function, the answer is 443 \boxed{443} .

Noted that I first see that x x is in the range [ 0 , 1 ] [0,1] , so I can compute those two identity, otherwise there might be another way to solve this.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...