f ( x ) = n → ∞ lim k = 1 ∑ n ( − 1 ) k − 1 ( ( 2 k − 1 ) ! x 2 k − 1 sin x − ( 2 k ) ! x 2 k cos x )
A function f ( x ) is definded as above. What is the value of ⌊ 1 0 0 0 0 ∫ 0 1 f ( x ) 2 d x ⌋ ?
Notation: ⌊ ⋅ ⌋ denotes the floor function .
This problem is a part of <Christmas Streak 2017> series .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
First, notice that f ( 0 ) = 0 .
Use integration by parts for infinite times.
∫ 1 ⋅ sin x d x = x sin x − ∫ x ( cos x ) d x = x sin x − 2 1 x 2 cos x − ∫ 2 1 x 2 sin x d x = x sin x − 2 1 x 2 cos x − 3 ! 1 x 3 sin x + ∫ 3 ! 1 x 2 ( cos x ) d x = x sin x − 2 ! 1 x 2 cos x − 3 ! 1 x 3 sin x + 4 ! 1 x 4 cos x + ∫ 4 ! 1 x 4 sin x d x = 1 ! 1 x sin x − 2 ! 1 x 2 cos x − 3 ! 1 x 3 sin x + 4 ! 1 x 4 cos x + 5 ! 1 x 5 sin x − 6 ! 1 x 6 cos x − ⋯ = n = 1 ∑ ∞ { ( − 1 ) n − 1 ( ( 2 n − 1 ) ! x 2 n − 1 ⋅ sin x − ( 2 n ) ! x 2 n ⋅ cos x ) } = f ( x )
Therefore f ( x ) = − cos x + 1 . ( ∵ f ( 0 ) = 0 )
And so ⌊ 1 0 0 0 0 ∫ 0 1 f ( x ) 2 d x ⌋ = ⌊ 1 0 0 0 0 ⋅ 4 1 ( 6 − 8 sin ( 1 ) + sin ( 2 ) ) ⌋ = 4 4 3 .
You have a sign problem in your first step (the derivative of sin(x) is cos(x), not -cos(x)). This changes the answer.
Log in to reply
@H.M. 유 brillaint solution.
Just have to know the following identity:
s i n x = x − 3 ! x 3 + 5 ! x 5 − 7 ! x 7 + . . . and c o s x = 1 − 2 ! x 2 + 4 ! x 4 − 6 ! x 6 + . . .
Then expand the sum carefully, you'll get:
f ( x ) = s i n x ( s i n x ) + c o s x ( c o s x − 1 ) = 1 − c o s x
Then do the integration, easily to get
1 0 0 0 0 ∫ 0 1 ( 1 − c o s x ) d x = 4 4 3 . 8 2 3 8 7 0 9 . . .
Get the floor function, the answer is 4 4 3 .
Noted that I first see that x is in the range [ 0 , 1 ] , so I can compute those two identity, otherwise there might be another way to solve this.
Problem Loading...
Note Loading...
Set Loading...
f ( x ) = k = 1 ∑ ∞ ( − 1 ) k − 1 ( ( 2 k − 1 ) ! x 2 k − 1 sin x − ( 2 k ) ! x 2 k cos x ) = k = 1 ∑ ∞ k ! x k cos ( 2 k π − x ) = k = 1 ∑ ∞ k ! x k ℜ ( e i ( 2 k π − x ) ) = ℜ ⎝ ⎜ ⎛ e i x 1 k = 1 ∑ ∞ k ! ( x e 2 i π ) k ⎠ ⎟ ⎞ = ℜ ( e i x 1 k = 1 ∑ ∞ k ! ( i x ) k ) = ℜ ( e i x 1 ( e i x − 1 ) ) = ℜ ( 1 − e − i x ) = ℜ ( 1 − cos x + i sin x ) = 1 − cos x By Euler’s formula: e i θ = cos θ + i sin θ where ℜ ( z ) is the real part of z . Multiply up and down by e − i x
Therefore,
I = ∫ 0 1 f ( x ) 2 d x = ∫ 0 1 ( 1 − cos x ) 2 d x = ∫ 0 1 ( 1 − 2 cos x + cos 2 x ) d x = x − 2 sin x + 2 x + 4 sin 2 x ∣ ∣ ∣ ∣ 0 1 = 2 3 − 2 sin 1 + 4 sin 2 ≈ 0 . 0 4 4 3 8 2 3 8 7
⟹ ⌊ 1 0 0 0 0 I ⌋ = 4 4 3