Christmas Streak 55/88: 2018 CSAT (Korean SAT) #29 of Natural Sciences

Geometry Level 5

There is a circle C C made by a plane x + 2 z 5 = 0 x+2z-5=0 intersecting a sphere x 2 + y 2 + z 2 = 6 x^2+y^2+z^2=6 in a coordinate space.

  • P \mathrm{P} is the point on the circle C C such that its y y -coordinate is minimized.
  • Q \mathrm{Q} is the foot of perpendicular from point P \mathrm{P} to the x y xy -plane.

For a point X \mathrm{X} moving around on the circle C , C, the maximum of P X + Q X 2 \left|\overrightarrow{\mathrm{PX}}+\overrightarrow{\mathrm{QX}}\right|^2 is a + b 30 . a+b\sqrt{30}.

Given that a a and b b are rational numbers, find the value of 10 ( a + b ) . 10(a+b).


Note: This shouldn't take more than 10 minutes to solve in order to have enough time to finish the whole test.

This problem is a part of <Christmas Streak 2017> series .


The answer is 136.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Nov 24, 2017

If we introduce the rotated coordinate frame O u v w Ouvw where u = 1 5 ( x + 2 z ) v = y w = 1 5 ( 2 x z ) u \; = \; \tfrac{1}{\sqrt{5}}(x+2z) \hspace{2cm} v \; = \; y \hspace{2cm} w \; = \; \tfrac{1}{\sqrt{5}}(2x - z) then the sphere has equation u 2 + v 2 + w 2 = 6 u^2 + v^2 + w^2 = 6 , while C \mathcal{C} is the intersection of this sphere with the plane u = 5 u=\sqrt{5} , so has equation u = 5 u=\sqrt{5} , v 2 + w 2 = 1 v^2 + w^2 = 1 . Thus the point P P has ( u , v , w ) (u,v,w) -coordinates ( 5 , 1 , 0 ) (\sqrt{5},-1,0) , or ( x , y , z ) (x,y,z) -coordinates ( 1 , 1 , 2 ) (1,-1,2) . Thus Q Q has ( x , y , z ) (x,y,z) -coordinates ( 1 , 1 , 0 ) (1,-1,0) , and hence its ( u , v , w ) (u,v,w) -coordinates are ( 1 5 , 1 , 2 5 ) (\tfrac{1}{\sqrt{5}},-1,\tfrac{2}{\sqrt{5}}) . A general point X X on C \mathcal{C} has ( u , v , w ) (u,v,w) -coordinates ( 5 , cos θ , sin θ ) (\sqrt{5},\cos\theta,\sin\theta) . Thus. in terms of the O u v w Ouvw -coordinate system, P X + Q X = ( 0 cos θ + 1 sin θ ) + ( 4 5 cos θ + 1 sin θ 2 5 ) = ( 4 5 2 cos θ + 2 2 sin θ 2 5 ) \overrightarrow{PX} + \overrightarrow{QX} \; = \; \left(\begin{array}{c} 0 \\ \cos\theta + 1 \\ \sin\theta \end{array}\right) + \left(\begin{array}{c} \tfrac{4}{\sqrt{5}} \\ \cos\theta + 1 \\ \sin\theta - \tfrac{2}{\sqrt{5}}\end{array}\right) \; = \; \left(\begin{array}{c} \tfrac{4}{\sqrt{5}} \\ 2\cos\theta + 2 \\ 2\sin\theta - \tfrac{2}{\sqrt{5}} \end{array} \right) and hence P X + Q X 2 = 12 + 8 5 ( 5 cos θ sin θ ) 12 + 8 5 × 6 = 12 + 8 5 30 \big| \overrightarrow{PX} + \overrightarrow{QX}\big|^2 \; = \; 12 + \tfrac{8}{\sqrt{5}}(\sqrt{5}\cos\theta - \sin\theta) \; \le \; 12 + \tfrac{8}{\sqrt{5}} \times \sqrt{6} \; = \; 12 + \tfrac85\sqrt{30} making the answer 10 ( 12 + 8 5 ) = 136 10(12 + \tfrac{8}{5}) = \boxed{136} .

Boi (보이)
Nov 23, 2017

The distance between the center of the sphere ( 0 , 0 , 0 ) (0,~0,~0) and the intersecting plane x + 2 z 5 = 0 x+2z-5=0 is 5 5 = 5 . \dfrac{5}{\sqrt{5}}=\sqrt{5}.

The radius of the circle is 6 , \sqrt{6}, and so the radius of C C is 6 2 5 2 = 1. \sqrt{\sqrt{6}^2-\sqrt{5}^2}=1.

Note that C C is an intersection of x 2 + y 2 + z 2 = 6 x^2+y^2+z^2=6 and x = 2 z + 5. x=-2z+5.

( 2 z 5 ) 2 + y 2 + z 2 = 6 5 ( z 2 ) 2 1 + y 2 = 0 (2z-5)^2+y^2+z^2=6~\Leftrightarrow~5(z-2)^2-1+y^2=0

Therefore 1 y 2 0 1 y 1. 1-y^2\ge 0~\Leftrightarrow~-1\le y \le 1.

If y = 1 , y=-1, then z = 2 z=2 and x = 1. x=1. So P ( 1 , 1 , 2 ) \mathrm{P}(1,~-1,~2) and Q ( 1 , 1 , 0 ) . \mathrm{Q}(1,~-1,~0).


Note that P X + Q X = 2 M X \overrightarrow{\mathrm{PX}}+\overrightarrow{\mathrm{QX}}=2\overrightarrow{\mathrm{MX}} where M ( 1 , 1 , 1 ) ( midpoint of P and Q ) \mathrm{M}(1,~-1,~1)~(\text{midpoint of }\mathrm{P}\text{ and }\mathrm{Q})

Then this problem is about mazimizing M X . \overline{\mathrm{MX}}.

Shoot a foot of perpendicular from P \mathrm{P} to x + 2 z 5 = 0 x+2z-5=0 and call it H . \mathrm{H}. Then M H = 2 5 . \overline{\mathrm{MH}}=\dfrac{2}{\sqrt{5}}.

And since M X = M H 2 + H X 2 , \overline{\mathrm{MX}}=\sqrt{\overline{\mathrm{MH}}^2+\overline{\mathrm{HX}}^2}, so this problem is about maximizing H X . \overline{\mathrm{HX}}.

It's obvious that the maximum occurs when H , C , X \mathrm{H},~\mathrm{C},~\mathrm{X} are on a line in this sequence.


C \mathrm{C} is the foot of perpendicular from the origin to the plane x + 2 z 5 = 0 x+2z-5=0 which is parallel to the y y -axis.

Therefore, C ( ? , 0 , ? ) . \mathrm{C}(?,~0,~?).

Thinking on a x z xz -plane, we can figure out that C ( 1 , 0 , 2 ) . \mathrm{C}(1,~0,~2).

Then we get M C = 2 . \overline{\mathrm{MC}}=\sqrt{2}. So we get C H = M C 2 M H 2 = 2 2 ( 2 5 ) 2 = 30 5 . \overline{\mathrm{CH}}=\sqrt{\overline{\mathrm{MC}}^2-\overline{\mathrm{MH}}^2}=\sqrt{\sqrt{2}^2-\left(\dfrac{2}{\sqrt{5}}\right)^2}=\dfrac{\sqrt{30}}{5}.

Obviously we have C X = 1. \overline{\mathrm{CX}}=1.

Since we're looking for the maximum,

M X = M H 2 + H X 2 = ( 2 5 ) 2 + ( H C + C X ) 2 = 4 5 + ( 30 5 + 1 ) 2 = 4 5 + 6 5 + 1 + 2 30 5 = 3 + 2 30 5 . \overline{\mathrm{MX}}=\sqrt{\overline{\mathrm{MH}}^2+\overline{\mathrm{HX}}^2} \\ =\sqrt{\left(\dfrac{2}{\sqrt{5}}\right)^2+\left(\overline{\mathrm{HC}}+\overline{\mathrm{CX}}\right)^2} \\ =\sqrt{\dfrac{4}{5}+\left(\dfrac{\sqrt{30}}{5}+1\right)^2} \\ = \sqrt{\dfrac{4}{5}+\dfrac{6}{5}+1+\dfrac{2\sqrt{30}}{5}} \\ =\sqrt{3+\dfrac{2\sqrt{30}}{5}}.


P X + Q X 2 = 4 M X 2 = 4 ( 3 + 2 30 5 ) = 12 + 8 30 5 . \therefore~\left|\overrightarrow{\mathrm{PX}}+\overrightarrow{\mathrm{QX}}\right|^2=4\left|\overrightarrow{\mathrm{MX}}\right|^2=4\left(3+\dfrac{2\sqrt{30}}{5}\right)=12+\dfrac{8\sqrt{30}}{5}.

10 ( a + b ) = 10 ( 12 + 8 5 ) = 120 + 16 = 136 . 10(a+b)=10\left(12+\dfrac{8}{5}\right)=120+16=\boxed{136}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...