Christmas Streak 56/88: 2018 CSAT (Korean SAT) #30 of Natural Sciences

Calculus Level 5

For a real number t , t, a function f ( x ) f(x) is defined as:

f ( x ) = { 1 x t ( x t 1 ) 0 ( x t > 1 ) . \large f(x)=\cases{\begin{aligned} & 1-|x-t| && (|x-t|\leq1)\\\\ & 0 && (|x-t|>1) \end{aligned}}.

g ( t ) = k k + 8 f ( x ) cos ( π x ) d x \displaystyle g(t)=\int_{k}^{k+8}f(x)\cos(\pi x)dx is defined for some odd positive integer k , k, satisfying the condition below.

If we let α 1 , α 2 , , α m \alpha_1,~\alpha_2,~\cdots,\alpha_m be the list of all values for α \alpha from smallest to biggest such that function g ( t ) g(t) has a local minimum at t = α t=\alpha and g ( α ) < 0 , g(\alpha)<0, then i = 1 m α i = 45. \displaystyle \sum_{i=1}^{m} \alpha_i = 45.

Find the value of k π 2 i = 1 m g ( α i ) . \displaystyle k-\pi^2\sum_{i=1}^{m}g(\alpha_i).


Note: This shouldn't take more than 25 minutes to solve in order to have enough time to finish the whole test.

This problem is a part of <Christmas Streak 2017> series .


The answer is 21.0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Boi (보이)
Nov 25, 2017

cos ( k π ) = 1 \cos(k\pi)=-1 is trivial. Then let's split the cases into three.

k + 7 < t k + 8 k+7< t\leq k+8 and k + 8 < t k + 9 k+8< t\leq k+9 are omitted because they're symmetric to k < t k + 1 k< t\leq k+1 and k 1 t k . k-1 \leq t\leq k.


i) k 1 t k \text{i)}~k-1\leq t\leq k

g ( t ) = k t + 1 ( x + t + 1 ) cos ( π x ) d x = 1 π [ ( x + t + 1 ) sin ( π x ) ] k t + 1 1 π 2 [ cos ( π x ) ] k t + 1 = 1 π 2 cos ( t π ) 1 π 2 \begin{aligned} g(t) &=\int_{k}^{t+1} (-x+t+1)\cos(\pi x)dx \\ & =\frac{1}{\pi}\left[(-x+t+1)\sin(\pi x)\right]_{k}^{t+1}-\frac{1}{\pi^2}\left[\cos(\pi x)\right]_{k}^{t+1} \\ & =\frac{1}{\pi^2}\cos(t\pi)-\frac{1}{\pi^2}\end{aligned}


ii) k < t < k + 1 \text{ii)}~k<t<k+1

g ( t ) = k t ( x t + 1 ) cos ( π x ) d x + t t + 1 ( x + t + 1 ) cos ( π x ) d x = 1 π [ ( x t + 1 ) sin ( π x ) ] k t + 1 π 2 [ cos ( π x ) ] k t + 1 π [ ( x + t + 1 ) ] t t + 1 1 π 2 [ sin ( π x ) ] t t + 1 = 1 π sin ( t π ) + 1 π 2 ( cos ( t π ) + 1 ) 1 π sin ( t π ) + 2 π 2 cos ( t π ) = 1 π 2 ( 3 cos ( t π ) + 1 ) \begin{aligned} g(t) &=\int_{k}^{t} (x-t+1)\cos(\pi x)dx +\int_{t}^{t+1} (-x+t+1)\cos(\pi x)dx \\ & =\frac{1}{\pi} \left[(x-t+1)\sin(\pi x)\right]_{k}^{t} +\frac{1}{\pi^2}\left[\cos(\pi x)\right]_{k}^{t} +\frac{1}{\pi}\left[(-x+t+1)\right]_{t}^{t+1}-\frac{1}{\pi^2}\left[\sin(\pi x)\right]_{t}^{t+1} \\ & =\frac{1}{\pi}\sin(t\pi) +\frac{1}{\pi^2}\left(\cos(t\pi)+1\right)-\frac{1}{\pi}\sin(t\pi) + \frac{2}{\pi^2}\cos(t\pi) \\ & =\frac{1}{\pi^2}\left(3\cos(t\pi) + 1\right)\end{aligned}


iii) k + 1 < t < k + 7 \text{iii)}~k+1<t<k+7

g ( t ) = t 1 t ( x t + 1 ) cos ( π x ) d x + t t + 1 ( x + t + 1 ) cos ( π x ) d x = 1 π [ ( x t + 1 ) sin ( π x ) ] t 1 t + 1 π 2 [ ( x + t + 1 ) ] t t + 1 + 1 π [ ( x t + 1 ) sin ( π x ) ] t t + 1 1 π 2 [ ( x + t + 1 ) ] t t + 1 = 1 π sin ( t π ) + 2 π 2 cos ( t π ) 1 π sin ( t π ) + 2 π 2 cos ( t π ) = 4 π 2 cos ( t π ) \begin{aligned} g(t) &=\int_{t-1}^{t} (x-t+1)\cos(\pi x)dx + \int_{t}^{t+1} (-x+t+1)\cos(\pi x)dx \\ &=\frac{1}{\pi}\left[(x-t+1)\sin(\pi x)\right]_{t-1}^{t} +\frac{1}{\pi^2}\left[(-x+t+1)\right]_{t}^{t+1} +\frac{1}{\pi}\left[(x-t+1)\sin(\pi x)\right]_{t}^{t+1}-\frac{1}{\pi^2}\left[(-x+t+1)\right]_{t}^{t+1} \\ & =\frac{1}{\pi}\sin(t\pi)+\frac{2}{\pi^2}\cos(t\pi)-\frac{1}{\pi}\sin(t\pi)+\frac{2}{\pi^2}\cos(t\pi) \\ & =\frac{4}{\pi^2}\cos(t\pi)\end{aligned}


From above, we can see that g ( t ) g(t) has its local minima at t = k , k + 2 , k + 4 , k + 6. t=k,~k+2,~k+4,~k+6. Also, t = k + 8 t=k+8 yields a local minimum as well because of symmetry.

i = 1 m α m = k + ( k + 2 ) + ( k + 4 ) + ( k + 6 ) + ( k + 8 ) = 5 k + 20 = 45 k = 5. \displaystyle \sum_{i=1}^{m} \alpha_m = k+(k+2)+(k+4)+(k+6)+(k+8)=5k+20=45~\Leftrightarrow~k=5.

And since the local minima are 2 π 2 , 4 π 2 , 4 π 2 , 4 π 2 , 2 π 2 , \displaystyle -\frac{2}{\pi^2},~-\frac{4}{\pi^2},~-\frac{4}{\pi^2},~-\frac{4}{\pi^2},~-\frac{2}{\pi^2}, respectively,

we get k i = 1 m g ( α i ) = 5 π 2 ( 16 π 2 ) = 21 . \displaystyle k-\sum_{i=1}^{m}g(\alpha_i)=5-\pi^2\cdot\left(-\frac{16}{\pi^2}\right)=\boxed{21}.

In the (i) case :

f ( t ) = 1 π 2 cos π t 1 π 2 f(t)=\dfrac{1}{π^2}\cos π t -\dfrac{1}{π^2}

A Former Brilliant Member - 3 years, 4 months ago

Log in to reply

Oh shiet thank you

Boi (보이) - 3 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...