Christmas Streak 61/88: 2018 CSAT (Korean SAT) #30 of Liberal Arts

Calculus Level 5

For a quadratic function f ( x ) = 3 x x 2 2 , f(x)=\dfrac{3x-x^2}{2}, a function g ( x ) g(x) defined in the interval [ 0 , ) [0,~\infty) satisfies the below conditions.

(1) For 0 x < 1 , 0\le x<1, g ( x ) = f ( x ) . g(x)=f(x).

(2) For n x < n + 1 , n\le x< n+1, g ( x ) = 1 2 n { f ( x n ) ( x n ) } + x , g(x)=\dfrac{1}{2^n}\{f(x-n)-(x-n)\}+x, where n n is a natural number.

For some natural number k , k, function h ( x ) h(x) is defined as h ( x ) = { g ( x ) ( 0 x < 5 or x k ) 2 x g ( x ) 5 x < k . h(x)=\begin{cases} g(x) & (0\le x< 5~\text{or}~x\ge k) \\\\ 2x - g(x) & 5\le x < k \end{cases}.

Define a n = 0 n h ( x ) d x . \displaystyle a_n=\int_{0}^{n} h(x)dx.

Given that lim n ( 2 a n n 2 ) = 241 768 , \displaystyle \lim_{n\to\infty}(2a_n - n^2)=\dfrac{241}{768}, find the value of k . k.


This problem is a part of <Christmas Streak 2017> series .

10 7 12 11 8 9 13 6

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Dec 5, 2017

If we define F ( x ) = 1 2 x ( 1 x ) F(x) = \tfrac12x(1-x) for 0 x 1 0 \le x \le 1 , then we can write g ( x ) = 2 x F ( { x } ) + x x 0 g(x) \; = \; 2^{-\lfloor x \rfloor}F(\{x\}) + x \hspace{2cm} x \ge 0 where x \lfloor x \rfloor and { x } \{x\} are the integer and fractional parts of x x respectively. Then we have (assuming that k k is a positive integer greater than 5 5 ) h ( x ) = ε x 2 x F ( { x } ) + x x 0 h(x) \; = \; \frac{\varepsilon_{\lfloor x \rfloor}}{2^{\lfloor x \rfloor}} F(\{x \}) + x \hspace{2cm} x \ge 0 where ε j = { 1 5 j k 1 1 otherwise \varepsilon_j \; = \; \left\{ \begin{array}{lll} -1 & \hspace{1cm} & 5 \le j \le k-1 \\ 1 & & \text{otherwise} \end{array} \right. and so a n = 0 n h ( x ) d x = 1 2 n 2 + j = 0 n 1 ε j 2 j 0 1 F ( x ) d x = 1 2 n 2 + 1 12 j = 1 n 1 2 j 1 6 j = 5 k 1 2 j = 1 2 n 2 + 1 6 ( 1 2 n ) 1 96 ( 1 2 5 k ) \begin{aligned} a_n \; = \; \int_0^n h(x)\, dx & = \; \tfrac12n^2 + \sum_{j=0}^{n-1} \frac{\varepsilon_j}{2^j} \int_0^1 F(x)\,dx \; = \; \tfrac12n^2 + \tfrac{1}{12}\sum_{j=1}^{n-1}2^{-j} - \tfrac16\sum_{j=5}^{k-1} 2^{-j} \\ & = \; \tfrac12n^2 + \tfrac16(1 - 2^{-n}) - \tfrac{1}{96}(1 - 2^{5-k}) \end{aligned} and hence lim n ( 2 a n n 2 ) = 1 3 1 48 ( 1 2 5 k ) = 15 48 + 1 3 2 1 k \lim_{n \to \infty} (2a_n - n^2) \; = \; \tfrac13 - \tfrac{1}{48}(1 - 2^{5-k}) \; = \; \tfrac{15}{48} + \tfrac13 2^{1-k} Since this limit equals 241 768 \tfrac{241}{768} , we deduce that k = 9 k = \boxed{9} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...