Christmas Streak 76/88: Geometry Rush #6

Geometry Level 3

In a rectangle A B C D \rm ABCD where A B = 6 , B C = 8 , \rm \overline{AB}=6,~\overline{BC}=8, let M , N \rm M,~N be the midpoints of B C , D C , \rm \overline{BC},~\overline{DC}, and let the intersections of B D , B M \rm \overline{BD},~\overline{BM} with A C \rm \overline{AC} be O , P . \rm O,~P.

Let Q , R \rm Q,~R be the intersections of B D , B M \rm \overline{BD},~\overline{BM} with A N . \rm \overline{AN}.

The area of O P R Q \square \rm OPRQ is p q \dfrac{p}{q} where p , q p,~q are coprime positive integers.

Find the value of p + q . p+q.


This problem is a part of <Christmas Streak 2017> series .


The answer is 17.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Boi (보이)
Dec 21, 2017

Notice that P , Q \rm P,~Q are centroids of B C D \rm \triangle BCD and A C D . \rm \triangle ACD.

From it we note O Q : Q D = O P : P C = 1 : 2. \rm\overline{OQ}:\overline{QD}=\overline{OP}:\overline{PC}=1:2.

Then we infer that P Q / / C D . \rm \overline{PQ}//\overline{CD}.

Now look at O P Q . \triangle \rm OPQ.

Since O P Q O C D , \rm \triangle OPQ\sim\triangle OCD, with a ratio of 1 : 3 , 1:3, we figure out that O P Q = 1 9 O C D = 1 9 × 6 × 4 × 1 2 = 4 3 . \triangle \rm OPQ=\dfrac{1}{9}\triangle OCD=\dfrac{1}{9}\times6\times4\times\dfrac{1}{2}=\dfrac{4}{3}.

Extend D M \overline{\rm DM} until it meets with A B \overrightarrow{\rm AB} and call the intersection S . \rm S.

Since R A S R N D , \rm \triangle RAS \sim \triangle RND, drawing perpendicular line from R \rm R to A B ( C D ) , \rm \overline{AB}(\overline{CD}),

we figure out that R A S = 12 × 8 × 4 5 × 1 2 = 192 5 . \rm \triangle RAS=12\times8\times\dfrac{4}{5}\times\dfrac{1}{2}=\dfrac{192}{5}.

Also note that A R : R N = 4 : 1 , A Q : Q N = 2 : 1 A Q : Q R = 5 : 1. \rm\overline{AR}:\overline{RN}=4:1,~\overline{AQ}:\overline{QN}=2:1~\Rightarrow~\overline{AQ}:\overline{QR}=5:1.

Then P R Q S R A , \rm \triangle PRQ \sim \triangle SRA, with a ratio of 1 : 6. 1:6.

Therefore P R Q = 1 36 S R A = 1 36 × 192 5 = 16 15 , \rm \triangle PRQ=\dfrac{1}{36}\triangle SRA=\dfrac{1}{36}\times\dfrac{192}{5}=\dfrac{16}{15},

showing O P R Q = O P Q + P R Q = 4 3 + 16 15 = 12 5 \rm \square OPRQ=\triangle OPQ + \triangle PRQ = \dfrac{4}{3}+\dfrac{16}{15}=\dfrac{12}{5}

p + q = 17 . \therefore~p+q=\boxed{17}.


Other methods exist:

1. Use D O P = 1 6 B C D \rm \triangle DOP = \dfrac{1}{6}\triangle BCD and find the ratio of A Q : Q R : R N = 10 : 2 : 3 \rm \overline{AQ}:\overline{QR}:\overline{RN}=10:2:3 to figure out D Q R . \rm \triangle DQR. ( O P R Q = D O P D Q R \rm \square OPRQ = \triangle DOP - \triangle DQR )

2. Find the respective areas of A R D , A Q B , B O C , C P D , \rm \triangle ARD,~\triangle AQB,~\triangle BOC,~\triangle CPD, and subtract them all from A B C D . \rm \square ABCD.

etc.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...