Christmas Streak 82/88: Limits on Geometry #3

Calculus Level 5

As shown on the right, there is a circle C 1 \rm C_1 with radius 2 2 . 2\sqrt{2}.

For every natural number n 2 N , n\le 2N, conduct these:

1. Inscribe a square in C 2 n 1 \rm C_{2n-1} and call it A n . \rm A_{n}. S 2 n 1 S_{2n-1} is the difference of the area of C 2 n 1 \rm C_{2n-1} and A n . \rm A_{n}.

2. Inscribe a circle in A n \rm A_{n} and call it C 2 n . \rm C_{2n}.

3. Inscribe an equilateral triangle in C 2 n \rm C_{2n} and call it B n . \rm B_{n}. S 2 n S_{2n} is the difference of the area of C 2 n \rm C_{2n} and B n . \rm B_{n}.

lim N n = 1 2 N S n = p q ( a π + b c ) \displaystyle \lim_{N\to\infty}\sum_{n=1}^{2N}S_n=\dfrac{p}{q}(a\pi+b-\sqrt{c}) where p , q p,~q are coprime positive integers, a , b , c a,~b,~c are integers, and p q \dfrac{p}{q} is as large as possible.

Find p + q + a + b + c . p+q+a+b+c.


This problem is a part of <Christmas Streak 2017> series .


The answer is 38.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tapas Mazumdar
May 18, 2018

Using simple trigonometry and geometry, we can create a table as follows (here R = 2 2 R = 2\sqrt{2} is the radius of outermost circle C 1 C_1 ):

Value of n C 2 n 1 C 2 n A n B n n = 1 π R 2 2 R 2 π 2 R 2 3 3 8 R 2 n = 2 π 8 R 2 1 4 R 2 π 16 R 2 3 3 64 R 2 n = 3 π 64 R 2 1 32 R 2 π 128 R 2 3 3 512 R 2 n = N π 8 N 1 R 2 2 8 N 1 R 2 4 π 8 N R 2 3 3 8 N R 2 \begin{array}{c}\\ & \boxed{\text{Value of } n} & & \boxed{C_{2n-1}} & & \boxed{C_{2n}} & & \boxed{A_n} & & \boxed{B_n} \\ \\ & n=1 & & \pi R^2 & & - & & 2R^2 & & - \\ & & & - & & \dfrac{\pi}{2} R^2 & & - & & \dfrac{3 \sqrt{3}}{8} R^2 \\ & n=2 & & \dfrac{\pi}{8} R^2 & & - & & \dfrac{1}{4} R^2 & & - \\ & & & - & & \dfrac{\pi}{16} R^2 & & - & & \dfrac{3 \sqrt{3}}{64} R^2 \\ & n=3 & & \dfrac{\pi}{64} R^2 & & - & & \dfrac{1}{32} R^2 & & - \\ & & & - & & \dfrac{\pi}{128} R^2 & & - & & \dfrac{3 \sqrt{3}}{512} R^2 \\ \\ & \vdots & & \vdots & & \vdots & & \vdots & & \vdots \\ \\ & n=N & & \dfrac{\pi}{8^{N-1}} R^2 & & - & & \dfrac{2}{8^{N-1}} R^2 & & - \\ & & & - & & \dfrac{4\pi}{8^N} R^2 & & - & & \dfrac{3 \sqrt{3}}{8^N} R^2 \\ \end{array}

Thus

lim N n = 1 2 N S n = lim N ( n = 1 N S 2 n 1 + n = 1 N S 2 n ) = lim N ( n = 1 N ( C 2 n 1 A n ) + n = 1 N ( C 2 n B n ) ) = lim N ( n = 1 N ( π 2 ) R 2 8 n 1 + n = 1 N ( 4 π 3 3 ) R 2 8 n ) = n = 1 ( π 2 ) R 2 8 n 1 + n = 1 ( 4 π 3 3 ) R 2 8 n = 8 7 ( π 2 ) R 2 + 1 7 ( 4 π 3 3 ) R 2 = 64 7 ( π 2 ) + 8 7 ( 4 π 3 3 ) = 8 7 ( 12 π 16 27 ) \begin{aligned} \displaystyle \lim_{N \to \infty} \sum_{n=1}^{2N} S_n &= \lim_{N \to \infty} \left( \sum_{n=1}^{N} S_{2n-1} + \sum_{n=1}^{N} S_{2n} \right) \\ &= \displaystyle \lim_{N \to \infty} \left( \sum_{n=1}^{N} ( C_{2n-1} - A_n ) + \sum_{n=1}^{N} ( C_{2n} - B_n ) \right) \\ &= \displaystyle \lim_{N \to \infty} \left( \sum_{n=1}^{N} \dfrac{(\pi -2)R^2}{8^{n-1}} + \sum_{n=1}^{N} \dfrac{(4\pi -3\sqrt{3})R^2}{8^n} \right) \\ &= \sum_{n=1}^{\infty} \dfrac{(\pi -2)R^2}{8^{n-1}} + \sum_{n=1}^{\infty} \dfrac{(4\pi -3\sqrt{3})R^2}{8^n} \\ &= \dfrac{8}{7} (\pi -2) R^2 + \dfrac{1}{7} (4\pi -3\sqrt{3}) R^2 \\ &= \dfrac{64}{7} (\pi -2) + \dfrac{8}{7} (4\pi -3\sqrt{3}) \\ &= \dfrac{8}{7} \left( 12 \pi - 16 - \sqrt{27} \right) \end{aligned}

So p + q + a + b + c = 8 + 7 + 12 + ( 16 ) + 27 = 38 p+q+a+b+c = 8+7+12+(-16)+27 = \boxed{38} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...