Christoffel Symbol on a Spherical Metric

d s 2 = r 2 d θ 2 + 1 1 + r 2 sin 2 ( θ ) d ϕ 2 ds^2 = r^2 \, d\theta^2 + \dfrac{1}{1+r^2} \sin^2 (\theta) \, d\phi^2

A strange metric on a sphere of radius r r is given by the invariant interval described above.

Compute the Christoffel symbol Γ ϕ θ ϕ \large \Gamma^{\phi}_{\phi \theta} .

0 cot θ \cot \theta 1 1 + r 2 sin 2 θ \frac{1}{1+r^2} \sin^2 \theta sin ( θ ) cos ( θ ) r 4 + r 2 -\frac{\sin (\theta ) \cos (\theta )}{r^4+r^2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Matt DeCross
May 10, 2016

This Christoffel symbol is given by, computing:

Γ ϕ θ ϕ = 1 2 g ϕ λ ( ϕ g λ θ + θ g ϕ λ λ g ϕ θ ) = 1 2 g ϕ ϕ θ g ϕ ϕ = 1 2 ( 1 + r 2 ) 1 sin 2 θ 1 1 + r 2 2 sin θ cos θ = cot θ \begin{aligned} \Gamma^{\phi}_{\phi \theta} &= \frac12 g^{\phi \lambda} (\partial_{\phi} g_{\lambda \theta} + \partial_{\theta} g_{\phi \lambda} - \partial_{\lambda} g_{\phi \theta}) \\ &= \frac12 g^{\phi \phi} \partial_{\theta} g_{\phi \phi} \\ &= \frac12 (1+r^2) \frac{1}{\sin^2 \theta} \frac{1}{1+r^2} 2\sin \theta \cos \theta \\ &= \cot \theta \end{aligned}

hey, can you simplify this in more layman’s terms? I don’t get how the first line collapses into the second, or third for that matter

Jon Pinder - 1 year, 1 month ago

Log in to reply

Hi Jon, I know it's been a little while but I just posted a solution which I think goes through the steps in detail. Hopefully, it can be of some help to you.

KA M - 2 months, 1 week ago
Ka M
Apr 7, 2021

The invariant interval allows us to determine the covariant components of the metric ( g μ ν g_{\mu\nu} ):

d s 2 = r 2 d θ 2 + 1 1 + r 2 sin 2 ( θ ) d ϕ 2 = ( d θ d ϕ ) ( r 2 0 0 1 1 + r 2 sin 2 θ ) ( d θ d ϕ ) , ds^2 = r^2d\theta^2 + \frac{1}{1 + r^2}\sin^2(\theta)d\phi^2 = \begin{pmatrix} d\theta & d\phi \end{pmatrix} \begin{pmatrix} r^2 & 0\\ 0 & \frac{1}{1 + r^2}\sin^2\theta \end{pmatrix} \begin{pmatrix} d\theta\\ d\phi \end{pmatrix},

where the 2 × 2 2 \times 2 matrix is g μ ν g_{\mu\nu} . It only has θ - \theta\text{-} and ϕ - \phi\text{-} related components as we are on the surface of the sphere, where r r is constant. The contravariant components of the metric (i.e. the inverse metric components, g μ ν g^{\mu\nu} ) can be determined, since

g μ ν g μ ν = δ ν μ ( g θ θ g θ ϕ g ϕ θ g ϕ ϕ ) ( r 2 0 0 1 1 + r 2 sin 2 θ ) = ( 1 0 0 1 ) (eq. 1) . g^{\mu\nu}g_{\mu\nu} = \delta^{\mu}_{\nu} \Rightarrow \begin{pmatrix} g^{\theta \theta} & g^{\theta \phi}\\ g^{\phi \theta} & g^{\phi \phi} \end{pmatrix} \begin{pmatrix} r^2 & 0\\ 0 & \frac{1}{1 + r^2}\sin^2\theta \end{pmatrix} = \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} \text{\,\, (eq. 1)}.

From this, one finds that

g θ ϕ = g ϕ θ = 0 , g θ θ = 1 r 2 and g ϕ ϕ = 1 + r 2 sin 2 θ . g^{\theta\phi} = g^{\phi\theta} = 0, g^{\theta\theta} = \frac{1}{r^2} \text{\,\,\, and \,\,\,} g^{\phi\phi} = \frac{1 + r^2}{\sin^2\theta}.

(It's actually a general consequence of eq. 1 that, for orthogonal metrics such as this, the leading diagonal terms of the contravariant metric and the leading diagonal terms of the covariant metric are the multiplicative inverses of each other, i.e. g μ μ = 1 / g μ μ g^{\mu\mu} = 1/g_{\mu\mu} , and all other terms are 0.)

Using the given formula for the Christoffel symbols,

Γ ϕ θ ϕ = 1 2 g ϕ σ ( ϕ g σ θ + θ g ϕ σ σ g ϕ θ ) (eq. 2) , \Gamma^{\phi}_{\phi\theta} = \frac{1}{2}g^{\phi\sigma}\left(\partial_{\phi}g_{\sigma\theta} + \partial_{\theta}g_{\phi\sigma} - \partial_{\sigma}g_{\phi\theta} \right) \text{\,\, (eq. 2)},

where σ \sigma is a dummy index that sums over the coordinates ( θ \theta and ϕ \phi in this case).

However, as I stated above, it's a consequence of eq. 1 that g μ ν = g μ ν = 0 g_{\mu\nu} = g^{\mu\nu} = 0 when μ ν \mu \neq \nu (eq. 3) \text{\,\, (eq. 3)} .

Eq. 3 means that the last term in the bracket in eq. 2 will be zero no matter what σ \sigma is, so we can discard that term. Doing this, expanding the bracket and summing over the index σ \sigma explicitly, we get

Γ ϕ θ ϕ = 1 2 [ g ϕ σ ϕ g σ θ + g ϕ σ θ g ϕ σ ] \Gamma^{\phi}_{\phi\theta} = \frac{1}{2}\left[g^{\phi\sigma}\partial_{\phi}g_{\sigma\theta} + g^{\phi\sigma}\partial_{\theta}g_{\phi\sigma}\right]

= 1 2 [ ( g ϕ θ ϕ g θ θ + g ϕ ϕ ϕ g ϕ θ ) + ( g ϕ θ θ g ϕ θ + g ϕ ϕ θ g ϕ ϕ ) ] = \frac{1}{2}\left[\left(g^{\phi\theta}\partial_{\phi}g_{\theta\theta} + g^{\phi\phi}\partial_{\phi}g_{\phi\theta}\right) + \left(g^{\phi\theta}\partial_{\theta}g_{\phi\theta} + g^{\phi\phi}\partial_{\theta}g_{\phi\phi}\right)\right]

Γ ϕ θ ϕ = 1 2 g ϕ ϕ θ g ϕ ϕ (eq. 4) , \Rightarrow \Gamma^{\phi}_{\phi\theta} = \frac{1}{2}g^{\phi\phi}\partial_{\theta}g_{\phi\phi} \text{\,\, (eq. 4)},

where eq. 3 has been used to simplify the expression. Working out the partial derivative is as follows:

θ g ϕ ϕ = θ ( sin 2 θ 1 + r 2 ) = 1 1 + r 2 θ sin 2 θ = 1 1 + r 2 2 sin θ cos θ . \partial_{\theta}g_{\phi\phi} = \partial_{\theta}\left(\frac{\sin^2\theta}{1 + r^2}\right) = \frac{1}{1 + r^2}\partial_{\theta}\sin^2\theta = \frac{1}{1 + r^2}\cdot 2\sin\theta\cos\theta.

Plugging our now-known values into eq. 4, we end up with

Γ ϕ θ ϕ = 1 2 ( 1 + r 2 sin 2 θ ) ( 1 1 + r 2 2 sin θ cos θ ) = 1 sin 2 θ sin θ cos θ = cos θ sin θ = 1 tan θ = cot θ , \Gamma^{\phi}_{\phi\theta} = \frac{1}{2}\left(\frac{1 + r^2}{\sin^2\theta}\right)\left(\frac{1}{1 + r^2}\cdot 2\sin\theta\cos\theta\right) = \frac{1}{\sin^2\theta}\cdot \sin\theta\cos\theta = \frac{\cos\theta}{\sin\theta} = \frac{1}{\tan\theta} = \cot\theta,

which is the answer :)

I sincerely hope this was helpful!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...