Christyan's rational expression

Algebra Level 4

Let u , v , w u,v,w be real numbers satisfying u v w = u + v + w = 1 uvw=u+v+w=1 and u 2 + v 2 + w 2 = 2013 u^2+v^2+w^2=2013 . If 1 u v + w + 1 w u + v + 1 v w + u = a b , \dfrac{1}{uv+w}+\dfrac{1}{wu+v}+\dfrac{1}{vw+u} = -\frac{a}{b}, where a a and b b are positive coprime integers, what is the value of a a ?

This problem is posed by Christyan Tamaro N .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

Aaron Doman
Sep 1, 2013

Note that u v + w = u v u v + 1 = ( u 1 ) ( v 1 ) uv+w=uv-u-v+1=(u-1)(v-1) . Thus, the desired sum is 1 ( u 1 ) ( v 1 ) + 1 ( v 1 ) ( w 1 ) + 1 ( w 1 ) ( u 1 ) \frac{1}{(u-1)(v-1)}+\frac{1}{(v-1)(w-1)}+\frac{1}{(w-1)(u-1)} = u 1 + v 1 + w 1 ( u 1 ) ( v 1 ) ( w 1 ) =\frac{u-1+v-1+w-1}{(u-1)(v-1)(w-1)} = u + v + w 3 u v w u v v w w u + u + v + w 1 =\frac{u+v+w-3}{uvw-uv-vw-wu+u+v+w-1} = 2 1 u v v w w u . =\frac{-2}{1-uv-vw-wu}. From the identity ( u + v + w ) 2 = u 2 + v 2 + w 2 + 2 ( u v + v w + w u ) , (u+v+w)^2=u^2+v^2+w^2+2(uv+vw+wu), it follows that u v + v w + v u = 1 2 2013 2 = 1006. uv+vw+vu=\frac{1^2-2013}{2}=-1006. Thus, the sum is equal to 2 1007 -\frac{2}{1007} , so the numerator is equal to 2 \boxed{2} .

Moderator note:

Nice job! A very clear and well written solution.

The initial observation that u v + w = u v u v + 1 = ( u 1 ) ( v 1 ) uv+w=uv-u-v+1=(u-1)(v-1) helps to save a lot of tedious calculation.

Jon Haussmann
Sep 2, 2013

Squaring the equation u + v + w = 1 u + v + w = 1 , we get

u 2 + v 2 + w 2 + 2 u v + 2 u w + 2 v w = 1. u^2 + v^2 + w^2 + 2uv + 2uw + 2vw = 1.

Then 2013 + 2 ( u v + u w + v w ) = 1 2013 + 2(uv + uw + vw) = 1 , so u v + u w + v w = 1006 uv + uw + vw = -1006 .

We can then write 1 u v + w + 1 w u + v + 1 v w + u = 1 u v + w ( u + v + w ) + 1 w u + v ( u + v + w ) + 1 v w + u ( u + v + w ) = 1 u v + u w + v w + w 2 + 1 u v + u w + v 2 + v w + 1 u 2 + u v + u w + v w = 1 ( u + w ) ( v + w ) + 1 ( u + v ) ( v + w ) + 1 ( u + v ) ( u + w ) = ( u + v ) + ( u + w ) + ( v + w ) ( u + v ) ( u + w ) ( v + w ) = 2 ( u + v + w ) ( u + v ) ( u + w ) ( v + w ) . \begin{aligned} &\frac{1}{uv + w} + \frac{1}{wu + v} + \frac{1}{vw + u} \\ &= \frac{1}{uv + w(u + v + w)} + \frac{1}{wu + v(u + v + w)} + \frac{1}{vw + u(u + v + w)} \\ &= \frac{1}{uv + uw + vw + w^2} + \frac{1}{uv + uw + v^2 + vw} + \frac{1}{u^2 + uv + uw + vw} \\ &= \frac{1}{(u + w)(v + w)} + \frac{1}{(u + v)(v + w)} + \frac{1}{(u + v)(u + w)} \\ &= \frac{(u + v) + (u + w) + (v + w)}{(u + v)(u + w)(v + w)} \\ &= \frac{2(u + v + w)}{(u + v)(u + w)(v + w)}. \end{aligned}

Since u + v + w = 1 u + v + w = 1 , this is equal to 2 ( 1 w ) ( 1 v ) ( 1 u ) = 2 1 ( u + v + w ) + ( u v + u w + v w ) u v w = 2 1 1 1006 1 = 2 1007 . \begin{aligned} &\frac{2}{(1 - w)(1 - v)(1 - u)} \\ &= \frac{2}{1 - (u + v + w) + (uv + uw + vw) - uvw} \\ &= \frac{2}{1 - 1 - 1006 - 1} \\ &= -\frac{2}{1007}. \end{aligned}

The final answer is 2.

Moderator note:

Nice job! Great solution and and presentation.

Shashank Goel
Sep 2, 2013

(u+v+w)^2= u^2+v^2+w^2 +2(uv+vw+wu) and we get uv+vw+wu=-1006 u=1-v-w v=1-u-w w=1-u-v so, we get the given expression as 1/(u-1)(v-1) + 1/(v-1)(w-1) + 1/(w-1)(u-1) which is equal to (u-1+v-1+w-1)/(u-1)(v-1)(w-1) = (u+v+w-3)/(uvw-1-uv-vw-wu+u+w+v)= -2/1007 by substituting the values and hence a=2

Moderator note:

Nice solution!

Jan J.
Sep 2, 2013

Let $$S = \sum {\text{cyc}} \frac{1}{uv + w}$$ Now because u v w = 1 uvw = 1 we get $$S = \sum {\text{cyc}} \frac{1}{\frac{1}{u} + u} = \sum {\text{cyc}} \frac{u}{u^2 + 1}$$ Adding the fractions we get $$S = \bigg(\sum {\text{sym}} u^2v + \sum {\text{cyc}} u^2v^2w + \sum {\text{cyc}} u\bigg)\Bigg/ \bigg(u^2v^2w^2 + \sum {\text{cyc}} u^2v^2 + \sum {\text{cyc}} u^2 + 1\bigg) = \frac{A}{B}$$ Let's compute A A and B B individually. Now $$\left(\sum {\text{cyc}} u\right)^2 = 1 = \sum {\text{cyc}} (u^2 + 2uv) = 2013 + 2\sum {\text{cyc}} uv$$ Hence $$\sum {\text{cyc}} uv = -1006$$ Now $$\sum {\text{cyc}} u^2v^2w = uvw\sum {\text{cyc}} uv = -1006$$ $$\sum {\text{sym}} u^2v = \left(\sum {\text{cyc}}u\right)\left(\sum {\text{cyc}} uv\right) - 3uvw = 1 \cdot (-1006) - 3 = -1009$$ So $$A = -1009 - 1006 + 1 = -2014$$ Also $$\left(\sum {\text{cyc}} uv\right)^2 = (-1006)^2 = \sum {\text{cyc}} u^2v^2 + 2uvw\sum {\text{cyc}}u = \sum {\text{cyc}}u^2v^2 + 2$$ Hence $$\sum {\text{cyc}} u^2v^2 = (-1006)^2 - 2 = 1012034$$ Hence $$B = 1 + 1012034 + 2013 + 1 = 1014049$$ Hence $$-\frac{a}{b} = \frac{A}{B} = \frac{2014}{1014049} = \frac{2}{1007}$$ So $$a = \boxed{2}$$

for B ther's no need of calculating the entire value u can just insert the above sigma value in B and by rearranging it we can get it in the form of "(a^2+2ab+b^2)" which gives us (1006+1)^2 = 1007^2...I think thats much easier way 2 approach.......

Yugesh Karnati - 7 years, 9 months ago

I did the hard long way like this too... sigh

Kevin Fei - 7 years, 9 months ago
Vincent Tandya
Sep 3, 2013

Notice that u = 1 v w v = 1 u w w = 1 u v \begin{aligned} u &=& 1-v-w \\ v &=& 1-u-w \\ w &=& 1-u-v \end{aligned}

Subtitute these values. 1 u v + w + 1 w u + v + 1 v w + u \frac{1}{uv+w}+\frac{1}{wu+v}+\frac{1}{vw+u} = 1 u v + ( 1 u v ) + 1 w u + ( 1 u w ) + 1 v w + ( 1 v w ) = 1 ( u 1 ) ( v 1 ) + 1 ( w 1 ) ( u 1 ) + 1 ( v 1 ) ( w 1 ) = ( w 1 ) + ( v 1 ) + ( u 1 ) ( u 1 ) ( v 1 ) ( w 1 ) = ( u + w + v ) 3 u v w u v u w v w + u + v + w 1 = 1 3 u v w ( u v + u w + v w ) + ( u + v + w ) 1 = 2 1 ( u v + u w + v w ) + 1 1 \begin{aligned} &=& \frac{1}{uv+(1-u-v)} + \frac{1}{wu+(1-u-w)} + \frac{1}{vw+(1-v-w)} \\ &=& \frac{1}{(u-1)(v-1)}+\frac{1}{(w-1)(u-1)}+\frac{1}{(v-1)(w-1)} \\ &=& \frac{(w-1)+(v-1)+(u-1)}{(u-1)(v-1)(w-1)} \\ &=& \frac{(u+w+v)-3}{uvw-uv-uw-vw+u+v+w-1} \\ &=& \frac{1-3}{uvw-(uv+uw+vw)+(u+v+w)-1} \\ &=& \frac{-2}{1-(uv+uw+vw)+1-1} \\ \end{aligned}

How to find u v + u w + v w uv+uw+vw ? Use the equations given in the problem! u + v + w = u v w = 1 u+v+w=uvw=1 u 2 + v 2 + w 2 = 2013 u^2+v^2+w^2=2013

Square u + v + w u+v+w , and see what would we have.

( u + v + w ) 2 = u 2 + v 2 + w 2 + 2 u v + 2 u w + 2 v w 1 2 = ( u 2 + v 2 + w 2 ) + 2 ( u v + u w + v w ) 1 = 2013 + 2 ( u v + u w + v w ) \begin{aligned} (u+v+w)^2 &=& u^2+v^2+w^2+2uv+2uw+2vw \\ 1^2 &=& (u^2+v^2+w^2)+2(uv+uw+vw) \\ 1 &=& 2013+ 2(uv+uw+vw) \\ \end{aligned}

We get u v + u w + v w = 1 2013 2 = 1006 uv+uw+vw=\frac{1-2013}{2}=-1006 .

Now, let's return to the equation we left. 2 1 ( u v + u w + v w ) + 1 1 = 2 1 ( 1006 ) + 1 1 = 2 1007 \begin{aligned} \frac{-2}{1-(uv+uw+vw)+1-1} &=& \frac{-2}{1-(-1006)+1-1} \\ &=& \frac{-2}{1007}\\ \end{aligned}

So, our answer is 2 \boxed{2} .

u v w = 1 uvw = 1 u + v + w = 1 u + v + w = 1

u 2 + v 2 + w 2 + 2 u v = 1 u v = 1006. \Rightarrow u^2 + v^2 + w^2 +2\sum uv = 1 \Rightarrow \sum uv = -1006.

Now ,

u v + w = u v + 1 u v = ( u 1 ) ( v 1 ) uv + w = uv + 1 - u - v = (u - 1)(v - 1) .

Similarly,

w u + v = ( w 1 ) ( u 1 ) wu + v = (w - 1)(u - 1) , and

v w + u = ( v 1 ) ( w 1 ) vw + u = (v - 1)(w - 1)

Now ,

1 u v + w + 1 w u + v + 1 v w + u \frac{1}{uv + w} + \frac{1}{wu + v} + \frac{1}{vw + u}

= 1 ( u 1 ) ( v 1 ) + 1 ( w 1 ) ( u 1 ) + 1 ( v 1 ) ( w 1 ) = \frac{1}{(u - 1)(v - 1)} + \frac{1}{(w - 1)(u - 1)} +\frac{1}{(v - 1)(w - 1)}

= u + v + w 3 ( u 1 ) ( v 1 ) ( w 1 ) = 2 ( u 1 ) ( v 1 ) ( w 1 ) = \frac{u + v + w - 3}{(u - 1)(v - 1)(w - 1)} = \frac{ -2 }{(u - 1)(v - 1)(w - 1)}

( u 1 ) ( v 1 ) ( w 1 ) = u v w ( u + v + w ) u v 1 (u - 1)(v - 1)(w - 1) = uvw -( u + v + w ) - \sum uv - 1

= 2007).

Hence , the sum becomes 2 2007 \frac{-2}{2007} and hence a = 2 a =\fbox{2}

Note : I found a small mistake in the question , u , v u , v and w w can not be all reals. They are roots of equation :

x 3 x 2 1006 x 1 = 0 x^3 - x^2 - 1006x - 1 = 0 , which has only one real root .

I am sorry for the last statement . Actually, i checked at wolfram , you can also check , it shows 31.221 + 0. × 1 0 4 i -31.221 + 0. \times 10^{-4} i , which at a glance looks imaginary.

kushagraa aggarwal - 7 years, 9 months ago

Algebra is a place where some expressions fit in miraculously better than others.

Observe that: 1 u v + w = 1 u v + 1 u v = 1 ( u 1 ) ( v 1 ) \frac{1}{u v + w} = \frac{1}{u v + 1 - u - v} = \frac{1}{(u-1)(v-1)} and the like. So the expression becomes:

1 ( u 1 ) ( v 1 ) + 1 ( u 1 ) ( w 1 ) + 1 ( w 1 ) ( v 1 ) \frac{1}{(u-1)(v-1)} + \frac{1}{(u-1)(w-1)} + \frac{1}{(w-1)(v-1)} which on evaluating gives u + v + w 3 ( u 1 ) ( v 1 ) ( w 1 ) . . . . . . . . . . . . . \frac{u+v+w-3}{(u-1)(v-1)(w-1)} ............. ( ) (*)

Also, u v + v w + u w = 1 2 ( ( u + v + w ) 2 ( u 2 + v 2 + w 2 ) ) = 1006 uv + vw + uw =\frac{1}{2} ((u+v+w)^2 - (u^2+v^2+w^2)) = -1006

Expanding the denominator of ( ) (*) ,& substituting values, we get the expression as 2 1007 -\frac{2}{1007} , with a = a= 2 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...