"Chubbychev" Polynomials Practice: identities

Algebra Level 2

Let T n T_n be the nth Chebyshev Polynomial.

If T 90 ( x ) = 3 2 T_{90}(x)=\frac{\sqrt3}{2} , then find the value of T 360 ( x ) T_{360}(x) .


The answer is -0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Apr 18, 2015

Since T n ( cos θ ) = cos ( n θ ) x = cos θ T_n (\cos{\theta}) = \cos {(n\theta)}\quad \Rightarrow x = \cos {\theta}

T 90 ( cos θ ) = cos ( 90 θ ) = 3 2 = cos π 6 θ = π 540 \Rightarrow T_{90}(\cos{\theta}) = \cos{(90\theta)} = \frac {\sqrt{3}}{2} = \cos{\frac{\pi}{6}} \quad \Rightarrow \theta = \frac {\pi}{540}

T 360 ( x ) = T 360 ( cos θ ) = cos ( 360 θ ) = cos ( 360 π 540 ) = cos ( 2 π 3 ) = 1 2 \Rightarrow T_{360}(x) = T_{360}(\cos{\theta}) = \cos{\left( 360\theta \right)} = \cos{\left( \frac {360\pi}{540} \right)} = \cos{\left( \frac {2\pi}{3} \right)} = \boxed{-\frac{1}{2}}

WolframAlpha

1- solve chebyshevT(90,x)=sqrt(3)/2

get 5 solutions for x

2- chebyshevT(360,x)

=-0.5 (for any of 5 solutions x) from 1

Harout G. Vartanian - 4 years, 2 months ago
Trevor Arashiro
Apr 15, 2015

let x = cos ( u ) x=\cos(u)

T n ( cos ( u ) ) = cos ( n u ) T_n(\cos(u))=\cos(nu)

Thus we have

T 90 ( cos ( u ) ) = cos ( 90 u ) T_{90}(\cos(u))=\cos(90u)

using the identity cos ( 2 x ) = 2 cos 2 ( x ) 1 \cos(2x)=2\cos^2(x)-1

T 180 ( cos ( u ) ) = 2 ( T 90 ( cos ( u ) ) ) 2 1 = 1 2 T_{180}(\cos(u))=2(T_{90}(\cos(u)))^2-1=\frac{1}{2}

using this identity once again

T 360 ( cos ( u ) ) = 2 ( T 180 ( cos ( u ) ) ) 2 1 = 0.5 T_{360}(\cos(u))=2(T_{180}(\cos(u)))^2-1=-0.5

Hey @Trevor Arashiro so u loved my sarcasm "Chubbyshev "

A Former Brilliant Member - 6 years, 1 month ago

Log in to reply

Ya, I couldn't stop laughing

Trevor Arashiro - 6 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...