CIMC 2015 Quadrangle

Geometry Level 4


The answer is 95.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Aug 12, 2015

We note that:

A D C = 18 0 2 5 2 5 = 13 0 A B C = 36 0 B A D A D C D C B = 36 0 ( 8 5 + 2 5 ) 13 0 ( 2 5 + 3 0 ) = 6 5 \begin{aligned} \angle ADC & = 180^\circ - 25^\circ - 25^\circ = 130^\circ \\ \Rightarrow \angle ABC & = 360^\circ - \angle BAD - \angle ADC - \angle DCB \\ & = 360^\circ - (85^\circ+25^\circ) - 130^\circ - (25^\circ + 30 ^\circ) = 65^\circ \end{aligned}

Let D B C = θ A B D = 6 5 θ \angle DBC = \theta\quad \Rightarrow \angle ABD = 65^\circ - \theta .

Using Sine Rule, we have:

A D B D = sin ( 6 5 θ ) sin 11 0 = C D B D = sin θ sin 5 5 [ A D = C D ] sin ( 6 5 θ ) 2 sin 5 5 cos 5 5 = sin θ sin 5 5 sin ( 6 5 θ ) = 2 cos 5 5 sin θ sin 6 5 cos θ cos 6 5 sin θ = 2 cos 5 5 sin θ ( 2 cos 5 5 + cos 6 5 ) sin θ = sin 6 5 cos θ tan θ = sin 6 5 2 cos 5 5 + cos 6 5 = sin ( 6 0 + 5 ) 2 cos ( 6 0 5 ) + cos ( 6 0 + 5 ) = 3 2 cos 5 + 1 2 sin 5 2 ( 1 2 cos 5 + 3 2 sin 5 ) + 1 2 cos 5 3 2 sin 5 = 3 cos 5 + sin 5 3 cos 5 + 3 sin 5 = 1 3 θ = 3 0 \begin{aligned} \dfrac{\color{#3D99F6}{AD}}{BD} = \dfrac{\sin{(65^\circ - \theta)}}{\sin{110^\circ}} & = \dfrac{\color{#3D99F6}{CD}}{BD} = \dfrac{\sin{\theta}}{\sin{55^\circ}} \quad \quad \quad \small \color{#3D99F6} {[AD=CD]} \\ \Rightarrow \dfrac{\sin{(65^\circ - \theta)}}{2 \sin{55^\circ} \cos{55 ^\circ}} & = \dfrac{\sin{\theta}}{\sin{55^\circ}} \\ \sin{(65^\circ - \theta)} & = 2 \cos{55 ^\circ} \sin{\theta} \\ \sin{65^\circ} \cos{\theta} - \cos{65^\circ} \sin{\theta} & = 2 \cos{55 ^\circ} \sin{\theta} \\ (2 \cos{55 ^\circ} + \cos{65^\circ} ) \sin{\theta} & = \sin{65^\circ} \cos{\theta} \\ \Rightarrow \tan{\theta} & = \dfrac {\sin{65^\circ}} {2 \cos{55 ^\circ} + \cos{65^\circ}} \\ & = \dfrac {\sin{(60^\circ+5^\circ)}} {2 \cos{(60^\circ - 5^\circ)} + \cos{(60^\circ + 5^\circ)}} \\ & = \dfrac {\frac{\sqrt{3}}{2} \cos{5^\circ} + \frac{1}{2} \sin{5^\circ}} {2(\frac{1}{2} \cos{5^\circ} + \frac{\sqrt{3}}{2} \sin{5^\circ}) + \frac{1}{2} \cos{5^\circ} - \frac{\sqrt{3}}{2} \sin{5^\circ} } \\ & = \dfrac {\sqrt{3} \cos{5^\circ} + \sin{5^\circ}} {3\cos{5^\circ} + \sqrt{3} \sin{5^\circ}} \\ & = \dfrac{1}{\sqrt{3}} \\ \Rightarrow \theta & = 30^\circ \end{aligned}

B D C = 18 0 D C B D B C = 18 0 ( 2 5 + 3 0 ) 3 0 = 9 5 \begin{aligned} \Rightarrow \angle BDC & = 180^\circ - \angle DCB - \angle DBC \\ & = 180^\circ - (25^\circ + 30^\circ) - 30^\circ \\ & = \boxed{95^\circ} \end{aligned}

Math Man
Aug 18, 2015

http://imageshack.com/a/img538/6893/7jjM3p.png

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...