Cinch it

Calculus Level 5

The function F ( x , y , z ) F(x, y, z) is defined in the following manner:

F ( x , y , z ) = 2 F ( x , y , z ) , where 2 is the Laplacian. F(x, y, z) = \nabla^2 F(x, y, z) \text{, where } \nabla^2 \text{ is the Laplacian.}

The solution to this can be written in the following form:

F ( x , y , z ) = a ( u ) + a ( u ) , where u = x + y + z . F(x, y, z) = a(u) + a'(u) \text{, where } u = x+y+z.

The function a ( u ) a(u) obeys the nonlinear differential equation a ( 2 u ) = 2 a ( u ) a ( u ) a(2u) = 2 a(u) \cdot a'(u) . The average of the possible values of a ( 0 ) a(0) can be written as a b -\frac{a}{b} , where a a and b b are coprime positive integers. What is the value of a + b a+b ?

It may help to read about the Laplacian here .


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Michael Lee
Dec 20, 2013

As F ( x , y , z ) = a ( x + y + z ) + a ( x + y + z ) F(x, y, z) = a(x+y+z) + a'(x+y+z) and F ( x , y , z ) = 2 F ( x , y , z ) F(x, y, z) = \nabla^2 F(x, y, z) , we have a ( x + y + z ) + a ( x + y + z ) = 3 a ( x + y + z ) + 3 a [ 3 ] ( x + y + z ) 3 a [ 3 ] ( u ) + 3 a ( u ) a ( u ) a ( u ) = 0 a(x+y+z) + a'(x+y+z) = 3a''(x+y+z) + 3a^{[3]}(x+y+z) \Rightarrow \\ 3a^{[3]}(u) + 3a''(u) - a'(u) - a(u) = \hspace{0.25 em} 0

The characteristic equation for this is 3 x 3 + 3 x 2 x 1 = 0 3x^3+3x^2-x-1 = 0 , which factors into ( x 1 ) ( 3 x 2 1 ) = 0 (x-1)(3x^2-1) = 0 . Thus, the solutions are x = ± 1 3 , 1 x = \pm \frac{1}{\sqrt{3}}, 1 . Thus, the form of a ( u ) a(u) is a ( u ) = c 1 e 1 3 u + c 2 e 1 3 u + c 3 e u a(u) = c_1 e^{\frac{1}{\sqrt{3}}u} + c_2 e^{-\frac{1}{\sqrt{3}}u} + c_3 e^{-u} . We know that a ( 2 u ) = 2 a ( u ) a ( u ) a(2u) = 2a(u) \cdot a'(u) . (As a point of interest, this is satisfied by a ( u ) = sinh ( u ) a(u) = \sinh(u) .) Thus, c 1 e 2 u 3 + c 2 e 2 u 3 + c 3 e 2 u = 2 ( c 1 e u 3 3 c 3 e u c 2 e u 3 3 ) ( c 1 e u 3 + c 2 e u 3 + c 3 e u ) = 2 c 1 2 e 2 u 3 3 2 c 2 2 e 2 u 3 3 + ( 2 3 2 ) c 1 c 3 e ( 3 3 ) u 3 + ( 2 3 2 ) c 2 c 3 e ( 3 + 3 ) u 3 + 2 c 3 2 e 2 u c_1 e^{\frac{2 u}{\sqrt{3}}}+c_2 e^{-\frac{2 u}{\sqrt{3}}}+c_3 e^{-2 u} = 2 \left(\frac{c_1 e^{\frac{u}{\sqrt{3}}}}{\sqrt{3}}-c_3 e^{-u}-\frac{c_2 e^{-\frac{u}{\sqrt{3}}}}{\sqrt{3}}\right) \left(c_1 e^{\frac{u}{\sqrt{3}}}+c_2 e^{-\frac{u}{\sqrt{3}}}+c_3 e^{-u}\right) = \\ \frac{2 c_1^2 e^{\frac{2 u}{\sqrt{3}}}}{\sqrt{3}}-\frac{2 c_2^2 e^{-\frac{2 u}{\sqrt{3}}}}{\sqrt{3}} + \left(\frac{2}{\sqrt{3}}-2\right)c_1 c_3 e^{\frac{(\sqrt{3}-3)u}{3}} + \left(-\frac{2}{\sqrt{3}}-2\right)c_2 c_3 e^{\frac{-(\sqrt{3}+3)u}{3}} + 2{c_3}^2 e^{-2u}

All of this looks far much worse than it is. We don't actually have to deal with evaluating these monsters. We know that e p x e^{px} and e q x e^{qx} are not proportional for all x x , so the only way the above equation can be satisfied is if the coefficients are equal. This gives the following system:

2 c 1 2 3 = c 1 2 c 2 2 3 = c 2 2 c 1 c 3 3 2 c 1 c 3 = 0 2 c 2 c 3 3 2 c 2 c 3 = 0 2 c 3 2 = c 3 \frac{2 c_1^2}{\sqrt{3}}=c_1 \\ -\frac{2 c_2^2}{\sqrt{3}}=c_2 \\ \frac{2 c_1 c_3}{\sqrt{3}}-2 c_1 c_3=0 \\ -\frac{2 c_2 c_3}{\sqrt{3}}-2 c_2 c_3=0 \\ -2 c_3^2=c_3

The solutions of the above system in the format ( c 1 , c 2 , c 3 ) (c_1, c_2, c_3) are ( 0 , 0 , 0 ) ; ( 0 , 0 , 1 2 ) ; ( 0 , 3 2 , 0 ) ; ( 3 2 , 0 , 0 ) ; and ( 3 2 , 3 2 , 0 ) (0, 0, 0); (0, 0, -\frac{1}{2}); (0, -\frac{\sqrt{3}}{2}, 0); (\frac{\sqrt{3}}{2}, 0, 0); \text{ and } (\frac{\sqrt{3}}{2}, -\frac{\sqrt{3}}{2}, 0) . Plugging these back into a ( u ) a(u) and plugging in u = 0 u = 0 gives the set of values { 1 2 , 0 , 3 2 , 3 2 } \left\{-\frac{1}{2},0,-\frac{\sqrt{3}}{2},\frac{\sqrt{3}}{2}\right\} , the mean of which is 1 8 -\frac{1}{8} . Thus, a + b = 9 a+b = \boxed{9} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...