Cirbola!

Geometry Level 4

The figure above shows a unit circle inscribed in the parabloa y = x 2 y=x^2 . The coordinates of center of the circle inscribed can be written as ( a , b c ) \left( a , \dfrac bc \right) , where a , b , c a,b,c are non-negative integers with b , c b,c coprime.

Find a + b + c a+b+c .


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rudresh Tomar
Jan 14, 2015

T h e d i a g r a m i s s y m m e t r i c a b o u t y a x i s l e t c e n t e r b e ( 0 , a ) e q . o f c i r c l e x 2 + ( y a ) 2 = 1 s o l v i n g w i t h t h e e q u a t i o n o f t h e p a r a b o l a y = x 2 w e g e t x 2 + ( x 2 a ) 2 = 1 x 4 + ( 1 2 a ) x 2 + ( a 2 1 ) = 0 T h e p a r a b o l a a n d t h e c i r c l e w i l l b e t a n g e n t t o e a c h o t h e r w h e n t h i s e q . i n x 2 h a s r e a l a n d e q u a l r o o t s ( 1 2 a ) 2 = 4 ( a 2 1 ) a = 5 4 t h e c e n t e r o f t h e c i r c l e i s ( 0 , 5 4 ) s o a + b + c = 9 The\quad diagram\quad is\quad symmetric\quad about\quad y-axis\\ \therefore \quad let\quad center\quad be\quad (0,a)\\ \therefore \quad eq.\quad of\quad circle\longrightarrow { \quad x }^{ 2 }\quad +\quad { (y-a) }^{ 2 }\quad =\quad 1\\ solving\quad with\quad the\quad equation\quad of\quad the\quad parabola\quad y={ x }^{ 2 }\\ we\quad get\\ \Longrightarrow { \quad x }^{ 2 }\quad +\quad { ({ x }^{ 2 }-a) }^{ 2 }\quad =\quad 1\\ \Longrightarrow \quad { x }^{ 4 }\quad +\quad (1-2a){ x }^{ 2 }\quad +\quad ({ a }^{ 2 }-1)\quad =\quad 0\\ The\quad parabola\quad and\quad the\quad circle\quad will\quad be\quad tangent\quad \\ to\quad each\quad other\quad when\quad this\quad eq.\quad in{ \quad x }^{ 2 }\quad has\quad real\\ and\quad equal\quad roots\\ \Longrightarrow \quad \quad { (1-2a) }^{ 2 }\quad =\quad 4({ a }^{ 2 }-1)\\ \Longrightarrow \quad a\quad =\quad \frac { 5 }{ 4 } \\ the\quad center\quad of\quad the\quad circle\quad is\quad (0,\frac { 5 }{ 4 } )\\ so\quad a+b+c=9\\

we can also put x^2=y ,so that we get quadratic in y.

Atul Solanki - 6 years, 4 months ago

Log in to reply

Just looks different, relaxing, but the only work is making the discriminant 0. The solution equation is a quadratic in x^2 as mentioned thereof.

Hem Shailabh Sahu - 6 years, 4 months ago
Ron Gallagher
May 8, 2020

As Rudresh Tomar notes below, the circle will have an equation of the form x^2 + (y-k)^2 = 1. Differentiating this with respect to x gives: 2 x + 2 (y-k) (dy/dx) = 0. But, at the point of intersection, we must have the derivative wrt x of the circle and the derivative wrt x of the parabola equal. Also, the y-coordinates must be equal. So, if (t,t^2) is the point of intersection, we find 2 t + 2 (t^2-k) (2*t) = 0. Solving for k gives k = 1/2 + t^2. Substituting this value of k into the equation of the circle at point (t, t^2) gives: t^2 + (t^2 -1/2 - t^2) = 1. Thus, t^2 = 3/4 and k = 1/2 + 3/4 = 5/4. Thus, the coordinates of the center are (0, 5/4), so that a+b+c = 0 + 5 + 4 = 9.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...