Circle!

Geometry Level 3

Let C 0 C_0 be a unit circle. For n 1 n\geq 1 , let C n C_n be a circle whose area equals the area of a square inscribed in C n 1 C_{n-1} , where n = 1 , 2 , 3 , n=1,2,3,\ldots .

Compute i = 0 Area ( C i ) . \large \sum_{i=0}^{\infty}\text{Area}(C_i) \; .

For more problems try my set

π 2 π 2 \frac{{\pi}^2}{\pi-2} 3 4 \frac{3}{4} 1 π 2 \frac{1}{{\pi}^2} π 2 {\pi}^2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hassan Abdulla
Dec 27, 2017

the Area of the square inscribed in C n C_{ n } is 2 ( r n ) 2 2{ \left( r_{ n } \right) }^{ 2 }

so the area of C n + 1 = 2 ( r n ) 2 = π ( r n + 1 ) 2 C_{ n+1 }=2{ \left( r_{ n } \right) }^{ 2 }=\pi { \left( r_{ n+1 } \right) }^{ 2 }

r n + 1 = 2 π r n \Rightarrow r_{ n+1 }=\sqrt { \frac { 2 }{ \pi } } r_{ n }

r n = ( 2 π ) n n = 0 , 1 , 2 , 3 , . . . . . . \Rightarrow r_{ n }=\left( \sqrt { \frac { 2 }{ \pi } } \right) ^{ n }n=0,1,2,3,......

A r e a ( C n ) = n = 0 π ( r n ) 2 = π n = 0 ( 2 π ) n \sum { Area(C_{ n }) } =\sum _{ n=0 }^{ \infty }{ \pi { \left( r_{ n } \right) }^{ 2 } } =\pi \sum _{ n=0 }^{ \infty }{ { \left( \frac { 2 }{ \pi } \right) }^{ n } }

= π 1 2 π = π 2 π 2 =\frac { \pi }{ 1-\frac { 2 }{ \pi } } =\frac { { \pi }^{ 2 } }{ \pi -2 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...