Circle and straight line

Algebra Level 5

The x x -intercept and y y -intercept of the straight line L L are k k and 6 respectively. The range of values of k k is a b c k a + b c a-b\sqrt{c} \leq k \leq a+b\sqrt{c} such that the circle x 2 + y 2 20 x + 18 k y + 81 k 2 + 73 = 0 x^2+y^2-20x+\frac{18}{k}y+\frac{81}{k^2}+73 =0 intersects L L , where c c is square-free. Find a + b + c a+b+c .


The answer is 78.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Miles Koumouris
Dec 29, 2017

As in the other solution, we find the equation of the circle to be ( x 10 ) 2 + ( y + 9 k ) 2 = 27 , (x-10)^2+\left(y+\dfrac 9k\right)^2=27, so that we seek the range of k k for which there exist real x x satisfying ± 27 ( x 10 ) 2 9 k = y L = 6 k x + 6. \pm \sqrt{27-(x-10)^2}-\dfrac 9k=y_L=\dfrac{-6}{k}x+6. Solving for x x gives x = 10 k 2 ± 3 k k 2 + 68 k 181 + 36 k + 54 k 2 + 36 , x=\dfrac{10k^2\pm 3k\sqrt{-k^2+68k-181}+36k+54}{k^2+36}, which implies that k 2 + 68 k 181 0 , -k^2+68k-181\geq 0, and thus 34 5 39 k 34 + 5 39 , 34-5\sqrt{39}\leq k\leq 34+5\sqrt{39}, making a + b + c = 78 a+b+c=\boxed{78} .

Arjen Vreugdenhil
Dec 28, 2017

Completing the square, the circle equation can be written ( x 10 ) 2 + ( y + 9 k ) 2 = 27. (x - 10)^2 + (y + \tfrac 9 k)^2 = 27. The center of the circle is C ( 10 , 9 / k ) C\:(10, -9/k) and the radius is 27 \sqrt{27} .

We rotate the entire coordinate system: { x = k x 6 y y = 6 x + k y \begin{cases} x' = kx - 6y \\ y' = 6x + ky \end{cases} The rotation comes with a multiplication with factor k 2 + 6 2 \sqrt{k^2 + 6^2} .

This transformation changes

  • the line into the horizontal line y = 6 k y' = 6k ;

  • the center of the circle to C ( 10 k + 54 / k , 51 ) C'\:(10k + 54/k, 51) ;

  • the radius of the circle to 27 ( k 2 + 6 2 ) \sqrt{27(k^2 + 6^2)} .

The circle intersects the line if the distance of the center of the circle to the horizontal line is less than the radius: 51 6 k < 27 ( k 2 + 6 2 ) 17 2 k < 3 ( k 2 + 6 2 ) ( 17 2 k ) 2 < 3 ( k 2 + 6 2 ) k 2 68 k + 181 < 0 ( k 34 ) 2 < 975 k 34 < 5 39 . 51 - 6k < \sqrt{27(k^2 + 6^2)} \\ 17 - 2k < \sqrt{3(k^2 + 6^2)} \\ (17 - 2k)^2 < 3(k^2 + 6^2) \\ k^2 - 68k + 181 < 0 \\ (k - 34)^2 < 975 \\ |k - 34| < 5\sqrt{39}. Thus 34 5 39 k 34 + 5 39 34 - 5\sqrt{39} \leq k \leq 34 + 5\sqrt{39} , so that a + b + c = 34 + 5 + 39 = 78 . a + b + c = 34 + 5 + 39 = \boxed{78}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...