Circle and tangents and chords

Geometry Level 3

A chord A B AB lies on a circle with centre O O and radius 3 cm \text{3 cm} .

Chord A B AB is in a circle with centre O O and radius 3 cm \text{3 cm} . Two tangents at point A A and point B B intersect at point D D . Another tangent parallel to A B AB intersects A D AD at E E and B D BD at F F . Line O D OD intersects the circle at C C .

If A B = 4.8 cm AB=4.8 \text{ cm} , what is the length of E F EF in cm \text{cm} ?


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chris Lewis
Mar 13, 2020

We have sin C O A = 1 2 A B r = 4 5 \sin \angle COA = \frac{\frac12 AB}{r} = \frac45 .

Now note that points O A E C OAEC form a kite; so C O E = 1 2 C O A \angle COE = \frac12 \angle COA . Using standard identities, we have tan C O E = 1 2 \tan \angle COE = \frac12 .

Finally, E F = 2 C E = 2 3 tan C O E = 3 EF=2CE=2\cdot 3\tan\angle COE = \boxed3 .

Let A B \overline {AB} intersects O C \overline {OC} at G G . Then O G = 3 2 2. 4 2 = 1.8 , G C = 3 1.8 = 1.2 |\overline {OG}|=\sqrt {3^2-2.4^2}=1.8, |\overline {GC}|=3-1.8=1.2 . O A G \triangle {OAG} and O A D \triangle {OAD} are similar. So O G O A = O A O D \dfrac{|\overline {OG}|}{|\overline {OA}|}=\dfrac{|\overline {OA}|}{|\overline {OD}|} . Hence O D = 5 |\overline {OD}|=5 and C D = 5 3 = 2 |\overline {CD}|=5-3=2 . Finally O E F \triangle {OEF} is similar to O A B \triangle {OAB} . So C D E F = G D A B E F = 4.8 × 2 2 + 1.2 = 3 \dfrac{|\overline {CD}|}{|\overline {EF}|}=\dfrac{|\overline {GD}|}{|\overline {AB}|}\implies |\overline {EF}|=4.8\times \dfrac{2}{2+1.2}=\boxed 3 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...