Circle Fiesta.

Geometry Level pending

In the above diagram, A B C D ABCD is a square with side length of 10 10 , A P B APB and B P C BPC are semicircles and A B Q D ABQD is a quarter circle.

If the area A A of the shaded region R R can be expressed as

A = a b b arcsin ( c a ) + a b b arcsin ( b b a ) a b b b π a b A = \dfrac{a^b}{b}\arcsin(\dfrac{c}{a}) + a^b * b\arcsin(\dfrac{b^b}{a}) - \dfrac{a^b}{b^b}\pi - a^b , where a , b a,b and c c are coprime positive integers, find a + b + c a + b + c .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Dec 1, 2019

The desired area A = A R 2 A R 1 A = A_{R_{2}} - A_{R_{1}} .

R 2 : R_{2}:

x 2 + ( y 5 ) 2 = 25 x^2 + (y - 5)^2 = 25

x 2 + y 2 = 100 x^2 + y^2 = 100

Finding points of intersection:

( x 5 ) 2 + ( 100 x 2 10 ) 2 = 25 20 x = 2 100 x 2 (x - 5)^2 + (\sqrt{100 - x^2} - 10)^2 = 25 \implies 20 - x = 2\sqrt{100 - x^2} \implies 5 x ( x 8 ) = 0 x = 0 , x = 8 5x(x - 8) = 0 \implies x = 0, x = 8

y 2 ( x ) = 100 x 2 y_{2}(x) = \sqrt{100 - x^2} and y 1 ( x ) = 25 ( x 5 ) 2 + 10 y_{1}(x) = -\sqrt{25 - (x - 5)^2} + 10 \implies

A R 2 = 0 8 y 2 ( x ) y 1 ( x ) d x = A_{R_{2}} = \displaystyle\int_{0}^{8} y_{2}(x) - y_{1}(x) dx = 0 8 100 x 2 + 25 ( x 5 ) 2 10 d x \displaystyle\int_{0}^{8} \sqrt{100 - x^2} + \sqrt{25 - (x - 5)^2} - 10 dx

For I 1 = 25 ( x 5 ) 2 d x I_{1} = \displaystyle\int \sqrt{25 - (x - 5)^2} dx

Let x 5 = 5 sin ( θ ) d x = 5 cos ( θ ) d θ x - 5 = 5\sin(\theta) \implies dx = 5\cos(\theta) d\theta \implies

I 1 = 25 2 ( 1 + cos ( 2 θ ) ) d θ = 25 2 ( θ + sin ( θ ) cos ( θ ) ) = I_{1} = \dfrac{25}{2} \displaystyle\int (1 + \cos(2\theta)) d\theta = \dfrac{25}{2}(\theta + \sin(\theta)\cos(\theta)) =

25 2 ( arcsin ( x 5 5 ) + ( x 5 5 ) 25 ( x 5 ) 2 5 ) \dfrac{25}{2}(\arcsin(\dfrac{x - 5}{5}) + (\dfrac{x - 5}{5})\dfrac{\sqrt{25 - (x - 5)^2}}{5})

I 1 0 8 0 8 10 d x = ( I 1 0 8 80 = 25 2 arcsin ( 3 5 ) + 25 π 4 74 \implies I_{1}|_{0}^{8} - \displaystyle\int_{0}^{8} 10 dx = (\implies I_{1}|_{0}^{8} - 80 = \dfrac{25}{2}\arcsin(\dfrac{3}{5}) + \dfrac{25\pi}{4} - 74 .

Let I 2 = 100 x 2 d x I_{2} = \displaystyle\int \sqrt{100 - x^2} dx

Let x = 10 sin ( θ ) d x = 10 cos ( θ ) d θ x = 10\sin(\theta) \implies dx = 10\cos(\theta) d\theta \implies

I 2 = 50 ( 1 + cos ( 2 θ ) ) d θ = 50 ( θ + sin ( θ ) cos ( θ ) ) = I_{2} = 50\displaystyle\int (1 + \cos(2\theta)) d\theta = 50(\theta + \sin(\theta)\cos(\theta)) =

50 ( arcsin ( x 10 ) + ( x 10 ) 100 x 2 10 ) 50(\arcsin(\dfrac{x}{10}) + (\dfrac{x}{10})\dfrac{\sqrt{100 - x^2}}{10}) \implies

I 2 0 8 = 50 arcsin ( 4 5 ) + 24 I_{2}|_{0}^{8} = 50\arcsin(\dfrac{4}{5}) + 24

A R 2 = 25 2 arcsin ( 3 5 ) + 50 arcsin ( 4 5 ) + 25 π 4 50 \implies A_{R_{2}} = \boxed{\dfrac{25}{2}\arcsin(\dfrac{3}{5}) + 50\arcsin(\dfrac{4}{5}) + \dfrac{25\pi}{4} - 50} .

R 1 : R_{1}:

x 2 + ( y 5 ) 2 = 25 x^2 + (y - 5)^2 = 25

( x 5 ) 2 + ( y 10 ) 2 = 25 (x - 5)^2 + (y - 10)^2 = 25

Finding points of intersection:

y = 25 x 2 + 5 ( x 5 ) 2 + ( 25 x 2 5 ) 2 = 25 y = \sqrt{25 - x^2} + 5 \implies (x - 5)^2 + ( \sqrt{25 - x^2} - 5)^2 = 25 \implies

5 x = 25 x 2 x ( x 5 ) = 0 x = 0 , 5 \implies 5 - x = \sqrt{25 - x^2} \implies x(x - 5) = 0 \implies x = 0, 5

y 2 ( x ) = 25 x 2 + 5 y_{2}(x) = \dfrac{25 - x^2} + 5 and y 1 ( x ) = 25 ( x 5 ) 2 + 10 y_{1}(x) = -\sqrt{25 - (x - 5)^2} + 10 \implies

A R 1 = 0 5 y 2 ( x ) y 1 ( x ) d x = A_{R_{1}} = \displaystyle\int_{0}^{5} y_{2}(x) - y_{1}(x) dx = 0 5 25 x 2 + 25 ( x 5 ) 2 5 d x \displaystyle\int_{0}^{5} \sqrt{25 - x^2} + \sqrt{25 - (x - 5)^2} - 5 dx

I 1 = 0 5 25 ( x 5 ) 2 5 d x = I_{1} = \displaystyle\int_{0}^{5} \sqrt{25 - (x - 5)^2} - 5 dx =

25 2 ( arcsin ( x 5 5 ) + ( x 5 5 ) 25 ( x 5 ) 2 5 ) 0 5 25 = 25 4 π 25 \dfrac{25}{2}(\arcsin(\dfrac{x - 5}{5}) + (\dfrac{x - 5}{5})\dfrac{\sqrt{25 - (x - 5)^2}}{5})|_{0}^{5} - 25 = \dfrac{25}{4}\pi - 25

For I 2 = 0 5 25 x 2 d x I_{2} = \displaystyle\int_{0}^{5} \sqrt{25 - x^2} dx

Let x = 5 sin ( θ ) d x = 5 cos ( θ ) x = 5\sin(\theta) \implies dx = 5\cos(\theta) \implies

I 2 = 25 2 0 π 2 ( 1 + cos ( 2 θ ) ) d θ = I_{2} = \dfrac{25}{2}\displaystyle\int_{0}^{\dfrac{\pi}{2}} (1 + \cos(2\theta)) d\theta =

25 2 ( θ + sin ( θ ) cos ( θ ) ) 0 π 2 = 25 π 4 \dfrac{25}{2}(\theta + \sin(\theta)\cos(\theta))|_{0}^{\dfrac{\pi}{2}} = \dfrac{25\pi }{4}

A R 1 = 50 π 4 25 \implies A_{R_{1}} = \boxed{\dfrac{50\pi}{4} - 25}

\implies The desired area A = 25 2 arcsin ( 3 5 ) + 50 arcsin ( 4 5 ) 25 π 4 25 = A = \dfrac{25}{2}\arcsin(\dfrac{3}{5}) + 50\arcsin(\dfrac{4}{5}) - \dfrac{25\pi}{4} - 25 =

5 2 2 arcsin ( 3 5 ) + 5 2 2 arcsin ( 2 2 5 ) 5 2 2 2 π 5 2 = \dfrac{5^2}{2}\arcsin(\dfrac{3}{5}) + 5^2 * 2\arcsin(\dfrac{2^2}{5}) - \dfrac{5^2}{2^2}\pi - 5^2 =

a b b arcsin ( c a ) + a b b arcsin ( b b a ) a b b b π a b \dfrac{a^b}{b}\arcsin(\dfrac{c}{a}) + a^b * b\arcsin(\dfrac{b^b}{a}) - \dfrac{a^b}{b^b}\pi - a^b

a + b + c = 10 \implies a + b + c = \boxed{10} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...