The pink circle with center D is tangent to the blue, green and red semicircles with centers B , C and A respectively as shown above. If the blue and green semicircles have radii 2 and 1 respectively, find the radius of the pink circle.
Bonus: In General, If r 1 and r 2 are the radii of the blue and green semicircles, where r 1 > r 2 , and r 3 is the radius of the pink circle, find r 3 = f ( r 1 , r 2 ) .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I am doing the problem in general, then replacing the given values r 1 = 2 and r 2 = 1 into the final result to obtain r 3 .
Let r 1 > r 2 .
O M = 2 ( r 1 + r 2 ) ⟹ A M = r 1 + r 2 ⟹ A P = r 1 − r 2 ⟹ A B = r 2 and
A C = r 1 and A D = r 1 + r 2 − r 3
Using the law of cosines on △ B D A ⟹
( 1 ) : ( r 1 + r 3 ) 2 = r 2 2 + ( r 1 + r 2 − r 3 ) 2 − 2 r 2 ( r 1 + r 2 − r 3 ) cos ( θ )
Using the law of cosines on △ A D C ⟹
( 2 ) : ( r 2 + r 3 ) 2 = r 1 2 + ( r 1 + r 2 − r 3 ) 2 + 2 r 1 ( r 1 + r 2 − r 3 ) cos ( θ )
Multiplying ( 1 ) by r 1 and ( 2 ) by r 2 and adding we obtain:
r 1 3 + 2 r 1 2 r 3 + r 1 r 3 2 + r 2 3 + 2 r 2 2 r 3 + r 2 r 3 2 =
4 r 1 2 r 2 + 4 r 2 2 r 1 − 4 r 1 r 2 r 3 + r 1 3 − 2 r 1 2 r 3 − 2 r 2 2 r 3 + r 2 3 + r 2 r 3 2 + r 1 r 3 2
⟹ r 1 2 r 3 + r 2 2 r 3 = r 1 r 2 2 + r 2 r 1 2 − r 1 r 2 r 3 ⟹
( r 1 2 + r 1 r 2 + r 2 2 ) r 3 = r 1 r 2 ( r 1 + r 2 ) ⟹ r 3 = r 2 2 + r 1 r 2 + r 2 2 r 1 r 2 ( r 1 + r 2 )
Using r 1 = 2 and r 2 = 1 ⟹ r 3 = 7 6 ≈ 0 . 8 5 7 1 4 2 8 5 7 1 4 2 8 5 7 1 .
I believe there is a typo in your boxed answer for r 3 , it should read r 3 = r 1 2 + r 1 r 2 + r 2 2 r 1 r 2 ( r 1 + r 2 )
That's how I did it as well!
We note that A D = r 1 + r 2 − r 3 . B D = r 1 + r 3 , and C D = r 2 + r 3 . Let A be the origin of the x y -plane ( 0 , 0 ) . Then the point D ( x , y ) satisfies the following system of equations:
⎩ ⎨ ⎧ A D : B D : C D : x 2 + y 2 = ( r 1 + r 2 − r 3 ) 2 ( x + r 2 ) 2 + y 2 = ( r 1 + r 3 ) 2 ( x − r 1 ) 2 + y 2 = ( r 2 + r 3 ) 2 ⟹ x 2 + y 2 = r 1 2 + r 2 2 + r 3 2 + 2 ( r 1 r 2 − r 2 r 3 − r 3 r 1 ) ⟹ x 2 + 2 r 2 x + r 2 2 + y 2 = r 1 2 + 2 r 3 r 1 + r 3 2 ⟹ x 2 − 2 r 1 x + r 1 2 + y 2 = r 2 2 + 2 r 2 r 3 + r 3 2 . . . ( 1 ) . . . ( 2 ) . . . ( 3 )
( 2 ) − ( 1 ) : 2 r 2 x + r 2 2 ⟹ x ( 1 ) − ( 3 ) : 2 r 1 x − r 1 2 ⟹ x = − r 2 2 − 2 r 1 r 2 + 2 r 2 r 3 + 4 r 3 r 1 = − r 1 − r 2 + r 3 + r 2 2 r 3 r 1 = r 1 2 + 2 r 1 r 2 − 4 r 2 r 3 − 2 r 3 r 1 = r 1 + r 2 − r 3 − r 1 2 r 2 r 3 . . . ( 4 ) . . . ( 5 )
( 5 ) − ( 4 ) : 0 r 3 ( r 1 r 2 r 1 2 + r 1 r 2 + r 2 2 ) ⟹ r 3 = 2 r 1 + 2 r 2 − 2 r 3 − 2 r 3 ( r 1 r 2 + r 2 r 1 ) = r 1 + r 2 = r 1 2 + r 1 r 2 + r 2 2 r 1 r 2 ( r 1 + r 2 )
For r 1 = 2 and r 2 = 1 , we have r 3 = 2 2 + 2 ⋅ 1 + 1 2 2 ⋅ 1 ( 2 + 1 ) = 7 6 ≈ 0 . 8 5 7 .
Problem Loading...
Note Loading...
Set Loading...
By Descartes' theorem :
− r 1 + r 2 1 = r 1 1 + r 2 1 + r 3 1 − 2 r 1 r 2 1 + r 1 r 3 1 + r 2 r 3 1
which rearranges to:
r 3 = r 1 2 + r 1 r 2 + r 2 2 r 1 r 2 ( r 1 + r 2 )
Therefore, when r 1 = 2 and r 2 = 1 , r 3 = 2 2 + 2 ⋅ 1 + 1 2 2 ⋅ 1 ⋅ ( 2 + 1 ) = 7 6 ≈ 0 . 8 5 7 1 4 2 8 5 7 1 4 2 8 5 7 1 .