Circle Mania!

Geometry Level 3

The pink circle with center D D is tangent to the blue, green and red semicircles with centers B B , C C and A A respectively as shown above. If the blue and green semicircles have radii 2 2 and 1 1 respectively, find the radius of the pink circle.

Bonus: In General, If r 1 r_{1} and r 2 r_{2} are the radii of the blue and green semicircles, where r 1 > r 2 r_{1} > r_{2} , and r 3 r_{3} is the radius of the pink circle, find r 3 = f ( r 1 , r 2 ) r_{3} = f(r_{1},r_{2}) .


The answer is 0.8571428571428571.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

David Vreken
Jan 21, 2021

By Descartes' theorem :

1 r 1 + r 2 = 1 r 1 + 1 r 2 + 1 r 3 2 1 r 1 r 2 + 1 r 1 r 3 + 1 r 2 r 3 \large -\cfrac{1}{r_1 + r_2} = \cfrac{1}{r_1} + \cfrac{1}{r_2} + \cfrac{1}{r_3} - 2\sqrt{\cfrac{1}{r_1r_2} + \cfrac{1}{r_1r_3} + \cfrac{1}{r_2r_3}}

which rearranges to:

r 3 = r 1 r 2 ( r 1 + r 2 ) r 1 2 + r 1 r 2 + r 2 2 r_3 = \cfrac{r_1r_2(r_1 + r_2)}{r_1^2 + r_1r_2 + r_2^2}

Therefore, when r 1 = 2 r_1 = 2 and r 2 = 1 r_2 = 1 , r 3 = 2 1 ( 2 + 1 ) 2 2 + 2 1 + 1 2 = 6 7 0.8571428571428571 r_3 = \cfrac{2 \cdot 1 \cdot (2 + 1)}{2^2 + 2 \cdot 1 + 1^2} = \cfrac{6}{7} \approx \boxed{0.8571428571428571} .

Rocco Dalto
Jan 21, 2021

I am doing the problem in general, then replacing the given values r 1 = 2 r_{1} = 2 and r 2 = 1 r_{2} = 1 into the final result to obtain r 3 r_{3} .

Let r 1 > r 2 r_{1} > r_{2} .

O M = 2 ( r 1 + r 2 ) A M = r 1 + r 2 A P = r 1 r 2 A B = r 2 \overline{OM} = 2(r_{1} + r_{2}) \implies \overline{AM} = r_{1} + r_{2} \implies \overline{AP} = r_{1} - r_{2} \implies \overline{AB} = r_{2} and

A C = r 1 \overline{AC} = r_{1} and A D = r 1 + r 2 r 3 AD = r_{1} + r_{2} - r_{3}

Using the law of cosines on B D A \triangle{BDA} \implies

( 1 ) : ( r 1 + r 3 ) 2 = r 2 2 + ( r 1 + r 2 r 3 ) 2 2 r 2 ( r 1 + r 2 r 3 ) cos ( θ ) (1): \:\ (r_{1} + r_{3})^2 = r_{2}^2 + (r_{1} + r_{2} - r_{3})^2 - 2r_{2}(r_{1} + r_{2} - r_{3})\cos(\theta)

Using the law of cosines on A D C \triangle{ADC} \implies

( 2 ) : ( r 2 + r 3 ) 2 = r 1 2 + ( r 1 + r 2 r 3 ) 2 + 2 r 1 ( r 1 + r 2 r 3 ) cos ( θ ) (2): \:\ (r_{2} + r_{3})^2 = r_{1}^2 + (r_{1} + r_{2} - r_{3})^2 + 2r_{1}(r_{1} + r_{2} - r_{3})\cos(\theta)

Multiplying ( 1 ) (1) by r 1 r_{1} and ( 2 ) (2) by r 2 r_{2} and adding we obtain:

r 1 3 + 2 r 1 2 r 3 + r 1 r 3 2 + r 2 3 + 2 r 2 2 r 3 + r 2 r 3 2 = r_{1}^3 + 2r_{1}^2r_{3} + r_{1}r_{3}^2 + r_{2}^3 + 2r_{2}^2r_{3} + r_{2}r_{3}^2 =

4 r 1 2 r 2 + 4 r 2 2 r 1 4 r 1 r 2 r 3 + r 1 3 2 r 1 2 r 3 2 r 2 2 r 3 + r 2 3 + r 2 r 3 2 + r 1 r 3 2 4r_{1}^2r_{2} + 4r_{2}^2r_{1} - 4r_{1}r_{2}r_{3} + r_{1}^3 - 2r_{1}^2r_{3} -2r_{2}^2r_{3} + r_{2}^3 + r_{2}r_{3}^2 + r_{1}r_{3}^2

r 1 2 r 3 + r 2 2 r 3 = r 1 r 2 2 + r 2 r 1 2 r 1 r 2 r 3 \implies r_{1}^2r_{3} + r_{2}^2r_{3} = r_{1}r_{2}^2 + r_{2}r_{1}^2 - r_{1}r_{2}r_{3} \implies

( r 1 2 + r 1 r 2 + r 2 2 ) r 3 = r 1 r 2 ( r 1 + r 2 ) r 3 = r 1 r 2 ( r 1 + r 2 ) r 2 2 + r 1 r 2 + r 2 2 (r_{1}^2 + r_{1}r_{2} + r_{2}^2)r_{3} = r_{1}r_{2}(r_{1} + r_{2}) \implies \boxed{r_{3} = \dfrac{r_{1}r_{2}(r_{1} + r_{2})}{r_{2}^2 + r_{1}r_{2} + r_{2}^2}}

Using r 1 = 2 r_{1} = 2 and r 2 = 1 r 3 = 6 7 0.8571428571428571 r_{2} = 1 \implies \boxed{r_{3} = \dfrac{6}{7} \approx 0.8571428571428571} .

I believe there is a typo in your boxed answer for r 3 r_3 , it should read r 3 = r 1 r 2 ( r 1 + r 2 ) r 1 2 + r 1 r 2 + r 2 2 r_3 = \cfrac{r_1r_2(r_1 + r_2)}{r_1^2 + r_1r_2 + r_2^2}

David Vreken - 4 months, 3 weeks ago

Log in to reply

Thanks. I didn't notice it.

Rocco Dalto - 4 months, 3 weeks ago

That's how I did it as well!

Veselin Dimov - 4 months, 2 weeks ago
Chew-Seong Cheong
Jan 22, 2021

We note that A D = r 1 + r 2 r 3 AD=r_1+r_2 - r_3 . B D = r 1 + r 3 BD=r_1+r_3 , and C D = r 2 + r 3 CD=r_2+r_3 . Let A A be the origin of the x y xy -plane ( 0 , 0 ) (0,0) . Then the point D ( x , y ) D(x,y) satisfies the following system of equations:

{ A D : x 2 + y 2 = ( r 1 + r 2 r 3 ) 2 x 2 + y 2 = r 1 2 + r 2 2 + r 3 2 + 2 ( r 1 r 2 r 2 r 3 r 3 r 1 ) . . . ( 1 ) B D : ( x + r 2 ) 2 + y 2 = ( r 1 + r 3 ) 2 x 2 + 2 r 2 x + r 2 2 + y 2 = r 1 2 + 2 r 3 r 1 + r 3 2 . . . ( 2 ) C D : ( x r 1 ) 2 + y 2 = ( r 2 + r 3 ) 2 x 2 2 r 1 x + r 1 2 + y 2 = r 2 2 + 2 r 2 r 3 + r 3 2 . . . ( 3 ) \begin{cases} \begin{array} {lll} AD: & x^2 + y^2 = (r_1+r_2-r_3)^2 & \implies x^2 + y^2 = r_1^2+r_2^2+r_3^2 + 2(r_1r_2 -r_2r_3 - r_3r_1) & ...(1) \\ BD: & (x+r_2)^2 + y^2 = (r_1+r_3)^2 & \implies x^2 + 2r_2x + r_2^2 + y^2 = r_1^2 + 2r_3r_1 + r_3^2 & ...(2) \\ CD: & (x-r_1)^2 + y^2 = (r_2+r_3)^2 & \implies x^2 - 2r_1x + r_1^2 + y^2 = r_2^2 + 2r_2r_3 + r_3^2 & ...(3) \end{array} \end{cases}

( 2 ) ( 1 ) : 2 r 2 x + r 2 2 = r 2 2 2 r 1 r 2 + 2 r 2 r 3 + 4 r 3 r 1 x = r 1 r 2 + r 3 + 2 r 3 r 1 r 2 . . . ( 4 ) ( 1 ) ( 3 ) : 2 r 1 x r 1 2 = r 1 2 + 2 r 1 r 2 4 r 2 r 3 2 r 3 r 1 x = r 1 + r 2 r 3 2 r 2 r 3 r 1 . . . ( 5 ) \begin{aligned} (2)-(1): \quad 2r_2 x + r_2^2 & = - r_2^2 - 2r_1r_2 + 2r_2r_3 + 4r_3r_1 \\ \implies x & = -r_1 - r_2 + r_3 + \frac {2r_3r_1}{r_2} & ...(4) \\ (1)-(3): \quad 2r_1x - r_1^2 & = r_1^2 + 2r_1r_2 - 4r_2r_3 - 2r_3r_1 \\ \implies x & = r_1 + r_2 - r_3 - \frac {2r_2r_3}{r_1} & ...(5) \end{aligned}

( 5 ) ( 4 ) : 0 = 2 r 1 + 2 r 2 2 r 3 2 r 3 ( r 2 r 1 + r 1 r 2 ) r 3 ( r 1 2 + r 1 r 2 + r 2 2 r 1 r 2 ) = r 1 + r 2 r 3 = r 1 r 2 ( r 1 + r 2 ) r 1 2 + r 1 r 2 + r 2 2 \begin{aligned} (5)-(4): \hspace{1in} 0 & = 2r_1 + 2r_2 - 2r_3 - 2r_3 \left(\frac {r_2}{r_1} + \frac {r_1}{r_2} \right) \\ r_3 \left(\frac {r_1^2+r_1r_2+r_2^2}{r_1r_2} \right) & = r_1 + r_2 \\ \implies r_3 & = \frac {r_1r_2(r_1+r_2)}{r_1^2+r_1r_2+r_2^2} \end{aligned}

For r 1 = 2 r_1 = 2 and r 2 = 1 r_2 = 1 , we have r 3 = 2 1 ( 2 + 1 ) 2 2 + 2 1 + 1 2 = 6 7 0.857 r_3 = \dfrac {2\cdot 1(2+1)}{2^2+2\cdot 1 + 1^2} = \dfrac 67 \approx \boxed{0.857} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...