Circle Tangent to Circle

Geometry Level 3

A circle Γ \Gamma is tangent to the line y = 2 y = -2 and also externally tangential to the circle x 2 + y 2 = 1 x^2 + y^2 = 1 . Given that the center of Γ \Gamma is O = ( 16 , a ) , O=(16, a ) , what is the value of a ? a?

247 6 \frac{247}{6} 227 3 \frac{227}{3} 247 3 \frac{247}{3} 227 6 \frac{227}{6}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
Nov 15, 2020

Let us model the circle Γ \Gamma as ( x 16 ) 2 + ( y a ) 2 = ( a + 2 ) 2 (x-16)^2 + (y-a)^2 = (a+2)^2 such that it is tangent to line y = 2 y=-2 at the point ( 16 , 2 ) . (16,-2). If Γ \Gamma is externally tangent to the unit circle x 2 + y 2 = 1 x^2 + y^2 = 1 , then we have the relation:

x 2 + y 2 = 1 ; x^2 + y^2 = 1;

( x 2 32 x + 256 ) + ( y 2 2 a y + a 2 ) = a 2 + 4 a + 4 (x^2 -32x + 256) + (y^2 -2ay + a^2) = a^2 + 4a + 4 ;

or y = 32 x 4 a + 253 2 a y = \frac{-32x - 4a + 253}{2a} . If we substitute this expression into the unit circle, then we obtain the quadratic equation:

x 2 + ( 32 x 4 a + 253 2 a ) 2 = 1 x^2 + ( \frac{-32x - 4a + 253}{2a})^2 = 1 ;

or 4 a 2 x 2 + ( 1024 x 2 64 ( 253 4 a ) x + ( 253 4 a ) 2 = 4 a 2 ; 4a^2x^2 + (1024x^2 - 64(253-4a)x + (253-4a)^2 = 4a^2;

or x = 64 ( 253 4 a ) ± 6 4 2 ( 253 4 a ) 2 4 ( 4 a 2 + 1024 ) [ ( 253 4 a ) 2 4 a 2 ] 4 a 2 + 1024 x = \frac{64(253-4a) \pm \sqrt{64^2(253-4a)^2 - 4(4a^2+1024)[(253-4a)^2 - 4a^2]}}{4a^2 + 1024} . We desire only one external tangency point , which occurs the discriminant equals zero:

6 4 2 ( 253 4 a ) 2 4 ( 4 a 2 + 1024 ) [ ( 253 4 a ) 2 4 a 2 ] = 0 64^2(253-4a)^2 - 4(4a^2+1024)[(253-4a)^2 - 4a^2] = 0 ;

or ( 253 4 a ) 2 ( 6 4 2 16 a 2 6 4 2 ) + 16 a 2 = 0 ; (253-4a)^{2}(64^2 - 16a^2 -64^2) + 16a^2 = 0;

or 16 a 2 [ 1 ( 253 4 a ) 2 ] = 0 ; 16a^2[1 - (253-4a)^2] = 0;

or a = 0 , 247 6 , 255 2 a = 0,\frac{247}{6}, \frac{255}{2} . We now check for tangency feasibility between Γ \Gamma and the unit circle. For a = 0 a=0 , we have ( x 16 ) 2 + y 2 = 4 (x-16)^2 + y^2 = 4 \Rightarrow no intersection points. For a = 255 2 , a = \frac{255}{2}, we have ( x 16 ) 2 + ( y 255 2 ) 2 = ( 259 2 ) 2 (x-16)^2 + (y - \frac{255}{2})^2 = (\frac{259}{2})^2 \Rightarrow two intersection points. By default, a = 247 6 \boxed{a = \frac{247}{6}} is our desired answer.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...