Circle Triangle Hybrid

Calculus Level 4

A circle of radius 1 1 is centered on the origin. An equilateral triangle is inscribed within the circle. Suppose we represent the coordinates of the circle in polar coordinates as ( r c ( θ ) , θ ) \Big(r_c (\theta), \theta \Big) , and the coordinates of the triangle as ( r t ( θ ) , θ ) \Big(r_t (\theta), \theta \Big) . The polar coordinates specify the position relative to the origin, and the radii vary with θ \theta .

Define a hybrid curve:

r h ( θ ) = r c ( θ ) + r t ( θ ) 2 r_h (\theta) = \frac{r_c (\theta) + r_t (\theta)}{2}

All three curves are plotted on the diagram below. If the area of the purple region is A A , give your answer as 1000 A \lfloor 1000 A \rfloor .

Note: For any particular θ \theta , r c r_c and r t r_t each take on a single positive value


The answer is 798.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Guilherme Niedu
May 19, 2020

For the circle:

r c ( θ ) = 1 \large \displaystyle r_c(\theta) = 1

Let us consider only the right purple area, since the total purple area will be 3 3 times this one. For the triangle, let us define a straight line from the origin with angle θ \theta with the horizontal. Its equation will be:

y = tan ( θ ) x \large \displaystyle y = \tan(\theta) x

The right side of the triangle has equation:

y = 3 x + 1 \large \displaystyle y = -\sqrt{3} x + 1

So the point of intersection with the triangle (i.e. a generic point in the right side of the triangle) has coordinates:

x = 1 tan ( θ ) + 3 , y = tan ( θ ) tan ( θ ) + 3 \large \displaystyle x = \frac{1}{\tan(\theta) + \sqrt{3}}, y = \frac{\tan(\theta)}{\tan(\theta) + \sqrt{3}}

And then we can calculate r t ( θ ) r_t(\theta) :

r t 2 ( θ ) = x 2 + y 2 = tan 2 ( θ ) + 1 ( tan ( θ ) + 3 ) 2 \large \displaystyle r_t^2(\theta) = x^2 + y^2 = \frac{\tan^2(\theta) + 1}{(\tan(\theta) + \sqrt{3})^2}

r t 2 ( θ ) = sec 2 ( θ ) ( tan ( θ ) + 3 ) 2 \large \displaystyle r_t^2(\theta) = \frac{\sec^2(\theta)}{(\tan(\theta) + \sqrt{3})^2}

r t ( θ ) = sec ( θ ) tan ( θ ) + 3 \large \displaystyle r_t(\theta) = \frac{\sec(\theta)}{\tan(\theta) + \sqrt{3}}

So:

r h ( θ ) = 1 2 ( sec ( θ ) tan ( θ ) + 3 + 1 ) \color{#20A900} \boxed{ \large \displaystyle r_h(\theta) = \frac12 \left(\frac{\sec(\theta)}{\tan(\theta) + \sqrt{3}} + 1 \right ) }

Let us consider the red marked area in the figure below:

This area will be given by the integral:

π 6 π 2 1 2 r h 2 ( θ ) d θ \large \displaystyle \int_{-\frac{\pi}{6}}^{\frac{\pi}{2}} \frac12 r_h^2(\theta) d \theta

So the area A p A_p of one purple area will be this integral minus the area of the triangle with legs as the two radii of the circle marked in red in the figure, which make an angle of 2 π 3 \frac{2 \pi}{3} between them. So, using the area for a triangle knowing two sides and the angle between them:

A p = π 6 π 2 1 2 [ 1 2 ( sec ( θ ) tan ( θ ) + 3 + 1 ) ] 2 d θ 1 2 1 1 sin ( 2 π 3 ) \large \displaystyle A_p = \int_{-\frac{\pi}{6}}^{\frac{\pi}{2}} \frac12 \left [ \frac12 \left(\frac{\sec(\theta)}{\tan(\theta) + \sqrt{3}} + 1 \right ) \right ] ^2 d \theta - \frac12 \cdot 1 \cdot 1 \cdot \sin \left ( \frac{2\pi}{3} \right)

A p = 1 8 [ π 6 π 2 sec 2 ( θ ) ( tan ( θ ) + 3 ) 2 d θ + π 6 π 2 d θ + 2 π 6 π 2 sec ( θ ) tan ( θ ) + 3 d θ ] 3 4 \large \displaystyle A_p = \frac18 \left [\int_{-\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{ \sec^2(\theta)}{ (\tan(\theta)+\sqrt{3})^2} d \theta + \int_{-\frac{\pi}{6}}^{\frac{\pi}{2}} d\theta + 2 \int_{-\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{ \sec(\theta)}{ \tan(\theta)+\sqrt{3}} d \theta \right] - \frac{\sqrt{3}}{4}

The first and second integrals are easy to evaluate. On the third, multiplying above and below by cos ( θ ) \cos(\theta) :

A p = 1 8 [ ( 1 ( tan ( θ ) + 3 ) ) π 6 π 2 + θ π 6 π 2 + 2 π 6 π 2 1 sin ( θ ) + 3 cos ( θ ) d θ ] 3 4 \large \displaystyle A_p = \frac18 \left [ \left ( \frac{-1}{(\tan(\theta)+\sqrt{3})} \right) \Bigg |_{-\frac{\pi}{6}}^{\frac{\pi}{2}} + \theta \Bigg |_{-\frac{\pi}{6}}^{\frac{\pi}{2}} + 2 \int_{-\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{1}{ \sin(\theta)+\sqrt{3}\cos(\theta)} d \theta \right] - \frac{\sqrt{3}}{4}

Rewriting the remaining intrgral:

A p = 1 8 [ 3 2 + 2 π 3 + π 6 π 2 1 1 2 sin ( θ ) + 3 2 cos ( θ ) d θ ] 3 4 \large \displaystyle A_p = \frac18 \left [ \frac{\sqrt{3}}{2} + \frac{2\pi}{3} + \int_{-\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{1}{\frac12 \sin(\theta)+ \frac{\sqrt{3}}{2}\cos(\theta)} d \theta \right] - \frac{\sqrt{3}}{4}

A p = 1 8 [ 3 2 + 2 π 3 + π 6 π 2 1 cos ( θ π 6 ) d θ ] 3 4 \large \displaystyle A_p = \frac18 \left [ \frac{\sqrt{3}}{2} + \frac{2\pi}{3} + \int_{-\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{1}{\cos \left( \theta-\frac{\pi}{6} \right)} d \theta \right] - \frac{\sqrt{3}}{4}

Make t = θ π 6 t = \theta - \frac{\pi}{6} , d t = d θ dt = d \theta :

A p = 1 8 [ 3 2 + 2 π 3 + π 3 π 3 sec ( t ) d t ] 3 4 \large \displaystyle A_p = \frac18 \left [ \frac{\sqrt{3}}{2} + \frac{2\pi}{3} + \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \sec(t) dt \right] - \frac{\sqrt{3}}{4}

A p = 1 8 [ 3 2 + 2 π 3 + ln ( sec ( t ) + tan ( t ) ) π 3 π 3 ] 3 4 \large \displaystyle A_p = \frac18 \left [ \frac{\sqrt{3}}{2} + \frac{2\pi}{3} + \ln(\sec(t)+ \tan(t)) \Bigg |_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \right] - \frac{\sqrt{3}}{4}

A p = 1 8 [ 3 2 + 2 π 3 + ln ( 2 + 3 2 3 ) ] 3 4 \large \displaystyle A_p = \frac18 \left [ \frac{\sqrt{3}}{2} + \frac{2\pi}{3} + \ln \left ( \frac{2+\sqrt{3}}{2-\sqrt{3}} \right ) \right] - \frac{\sqrt{3}}{4}

Rationalizing inside the ln \ln :

A p = 1 8 [ 3 2 + 2 π 3 + ln ( ( 2 + 3 ) 2 ) ] 3 4 \large \displaystyle A_p = \frac18 \left [ \frac{\sqrt{3}}{2} + \frac{2\pi}{3} + \ln \left ( ( 2+\sqrt{3} )^2 \right ) \right] - \frac{\sqrt{3}}{4}

A p = π 12 + ln ( 2 + 3 ) 4 3 3 16 \large \displaystyle A_p = \frac{\pi}{12} + \frac{\ln \left (2+\sqrt{3} \right ) }{4} - \frac{3 \sqrt{3}}{16}

Since we calculated only one of the 3 3 purple areas, A = 3 A p A = 3A_p :

A = π 4 + 3 ln ( 2 + 3 ) 4 9 3 16 0.798838 \color{#20A900} \boxed{ \large \displaystyle A = \frac{\pi}{4} + \frac{3 \ln \left (2+\sqrt{3} \right ) }{4} - \frac{9 \sqrt{3}}{16} \approx 0.798838 }

Thus:

1000 A = 798 \color{#3D99F6} \boxed{ \large \displaystyle \lfloor 1000A \rfloor = 798 }

Amazing solution, sir! Just a curiosity, are you brazilian too?

Paulo Silva - 1 year ago

Log in to reply

I am. From Rio.

Guilherme Niedu - 1 year ago

Very impressive solution, thanks

Steven Chase - 1 year ago

Log in to reply

Thank you, sir.

Guilherme Niedu - 1 year ago
Karan Chatrath
May 18, 2020

The triangle can be parameterised in polar coordinates as such:

r t ( θ ) = { sec θ tan θ + 3 0 θ π 2 sec θ tan θ 3 π 2 θ 7 π 6 0.5 sin θ 7 π 6 θ 11 π 6 sec θ tan θ + 3 11 π 6 θ 2 π r_t(\theta) = \begin{cases} \frac{\sec{\theta}}{\tan{\theta} + \sqrt{3}} & 0 \le \theta \le \frac{\pi}{2} \\ \frac{\sec{\theta}}{\tan{\theta} - \sqrt{3}} & \frac{\pi}{2} \le \theta \le \frac{7\pi}{6} \\ \frac{-0.5}{\sin{\theta}} & \frac{7\pi}{6} \le \theta \le \frac{11\pi}{6}\\ \frac{\sec{\theta}}{\tan{\theta} + \sqrt{3}} & \frac{11\pi}{6} \le \theta \le 2 \pi\\ \end{cases}

Finally: the required polar curve is:

r h = r t + 1 2 r_h = \frac{r_t + 1}{2}

And the purple area is computed as such:

A = 0 2 π 1 2 r h 2 d θ 0 2 π 1 2 r t 2 d θ A = \int_{0}^{2\pi} \frac{1}{2}r_h^2 \ d\theta - \int_{0}^{2\pi} \frac{1}{2}r_t^2 \ d\theta A 0.7988 \implies A \approx 0.7988

Integrals can be solved using any numerical tool.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...