Circles and Ellipses.

Geometry Level 3

The ellipse and the circle above intersect at P P and Q Q .

Let A = A e A c A = A_{e} - A_{c} , where A e A_{e} and A c A_{c} are the areas of the ellipse and circle respectively.

If A A can be expressed as A = ( ( α α ) β λ ω γ α β ( β α ) α ) π A = (\dfrac{(\alpha^{\alpha})^{\beta}\lambda}{\omega^{\frac{\gamma}{\alpha}}\sqrt{\beta}} - (\dfrac{\beta}{\alpha})^{\alpha})\pi , where α , β , λ , γ \alpha, \beta, \lambda, \gamma and ω \omega are coprime positive integers, find α + β + λ + γ + ω \alpha + \beta + \lambda + \gamma + \omega .


The answer is 896.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Sep 20, 2018

Using a x 2 + b x y + c y 2 + d x + e y = 0 ax^2 + bxy + cy^2 + dx + ey = 0 and the points I chose above to generate the ellipse.

(1) ( 0 , 4 ) : 4 c e = 0 c = e 4 (0,-4): 4c - e = 0 \implies \boxed{c = \dfrac{e}{4}}

(2) ( 8 , 4 ) : 16 a + 8 b + 4 c + 2 d + e = 0 (8,4): 16a + 8b + 4c + 2d + e = 0

(3) ( 8 , 4 ) : 16 a 8 b + 4 c + 2 d e = 0 (8,-4): 16a - 8b + 4c + 2d - e = 0

Subtracting (3) from (2) we obtain: 8 b + e = 0 b = e 8 8b + e = 0 \implies \boxed{b = -\dfrac{e}{8}}

(4) ( 5 , 8 ) : 25 a + 40 b + 64 c + 5 d + 8 c = 0 (5,8): 25a + 40b + 64c + 5d + 8c = 0

Replacing c = e 4 c = \dfrac{e}{4} and b = e 8 b = -\dfrac{e}{8} into (2) and (4) \implies

16 a + 2 d = e 16a + 2d = -e

25 a + 5 d = 19 e 25a + 5d = -19e

a = 11 e 10 \implies \boxed{a = \dfrac{11e}{10}} and d = 93 e 10 \boxed{d = -\dfrac{93e}{10}}

11 10 x 2 1 8 x y + 1 4 y 2 93 10 x + y = 0 \implies \dfrac{11}{10}x^2 - \dfrac{1}{8}xy + \dfrac{1}{4}y^2 - \dfrac{93}{10}x + y = 0 \implies 44 x 2 5 x y + 10 y 2 372 x + 40 y = 0 10 y 2 + 5 ( x 8 ) y + 44 x 2 372 x = 0 44x^2 - 5xy + 10y^2 - 372x + 40y = 0 \implies 10y^2 + 5(x - 8)y + 44x^2 - 372x = 0

Solving for y y we obtain:

y = x 8 4 ± 1 20 5 347 2207744 ( 347 x 1448 ) 2 y = \dfrac{x - 8}{4} \pm \dfrac{1}{20}\sqrt{\dfrac{5}{347}}\sqrt{2207744 - (347x - 1448)^{2}} .

y ( x ) = x 8 4 + 1 20 5 347 2207744 ( 347 x 1448 ) 2 y(x) = \dfrac{x - 8}{4} +\dfrac{1}{20}\sqrt{\dfrac{5}{347}}\sqrt{2207744 - (347x - 1448)^2} for the portion of the ellipse above the line y = x 8 4 y = \dfrac{x - 8}{4} .

Setting 2207744 ( 347 x 1448 ) 2 = 0 x = 1448 ± 448 11 347 2207744 - (347x - 1448)^2 = 0 \implies x = \dfrac{1448 \pm 448\sqrt{11}}{347} are the points of intersection of the ellipse and the line x 4 4 \dfrac{x - 4}{4} .

Letting a = 1448 448 11 347 a = \dfrac{1448 - 448\sqrt{11}}{347} and b = 1448 + 448 11 347 b =\dfrac{1448 + 448\sqrt{11}}{347} the area of the ellipse is A e = 2 a b y ( x ) x 8 4 d x = A_{e} = 2\displaystyle\int_{a}^{b} y(x) - \dfrac{x - 8}{4} \:\ dx =
1 10 5 347 a b 2207744 ( 347 x 1448 ) 2 d x = \dfrac{1}{10}\sqrt{\dfrac{5}{347}}\displaystyle\int_{a}^{b} \sqrt{2207744 - (347x - 1448)^{2}} dx = 1 2 5 347 a b 2207744 ( 347 x 1448 ) 2 d x \dfrac{1}{2\sqrt{5}\sqrt{347}}\displaystyle\int_{a}^{b} \sqrt{2207744 - (347x - 1448)^2} dx .

For I ( x ) = 2207744 ( 347 x 1448 ) 2 d x I(x) = \displaystyle\int \sqrt{2207744 - (347x - 1448)^2} dx

Let 347 x 1448 = 2207744 sin ( θ ) d x = 2207744 347 cos ( θ ) 347x - 1448 = \sqrt{2207744}\sin(\theta) \implies dx = \dfrac{\sqrt{2207744}}{347}\cos(\theta)

I ( θ ) = 2207744 347 cos 2 ( θ ) d θ = 2207744 694 ( 1 + cos ( 2 θ ) ) d θ = 2207744 694 ( θ + sin ( θ ) cos ( θ ) ) \implies I(\theta) = \dfrac{2207744}{347}\displaystyle\int \cos^2(\theta) d\theta = \dfrac{2207744}{694}\displaystyle\int (1 + \cos(2\theta)) d\theta = \dfrac{2207744}{694}(\theta +\sin(\theta)\cos(\theta))

I ( x ) = 2207744 694 ( arcsin ( 347 x 1448 2207744 ) + 347 x 1448 2207744 2207744 ( 347 x 1448 ) 2 ) \implies I(x) = \dfrac{2207744}{694}(\arcsin(\dfrac{347x - 1448}{\sqrt{2207744}}) + \dfrac{347x - 1448}{2207744}\sqrt{2207744 - (347x - 1448)^2}) \implies

A e = 551936 ( 347 ) 3 2 5 ( arcsin ( 347 x 1448 2207744 ) + 347 x 1448 2207744 2207744 ( 347 x 1448 ) 2 ) a b = 1103872 ( 347 ) 3 2 5 ( π 2 ) = A_{e} = \dfrac{551936}{(347)^{\frac{3}{2}}\sqrt{5}}(\arcsin(\dfrac{347x - 1448}{\sqrt{2207744}}) + \dfrac{347x - 1448}{2207744}\sqrt{2207744 - (347x - 1448)^2})|_{a}^{b} = \dfrac{1103872}{(347)^{\frac{3}{2}}\sqrt{5}}(\dfrac{\pi}{2}) =

551936 π ( 347 ) 3 2 5 \boxed{\dfrac{551936\pi}{(347)^{\frac{3}{2}}\sqrt{5}}}

For the circle ( x x 0 ) 2 + ( y y 0 ) = r 2 (x - x_{0})^2 + (y - y_{0}) = r^2 :

( 0 , 0 ) : x 0 2 + y 0 2 = r 2 (0,0): x_{0}^2 + y_{0}^2 = r^2

( 0 , 4 ) : x 0 2 + 16 + 8 y 0 + y 0 2 = r 2 y 0 = 2 (0,-4): x_{0}^2 + 16 + 8y_{0} + y_{0}^2 = r^2 \implies y_{0} = -2

( 3 , 0 ) 9 + 6 x 0 + x 0 2 + y 0 2 = r 2 x 0 = 3 2 (-3,0) 9 + 6x_{0} + x_{0}^2 + y_{0}^2 = r^2 \implies x_{0} = -\dfrac{3}{2}

r 2 = 25 4 A c = 25 4 π \implies r^2 = \dfrac{25}{4} \implies \boxed{A_{c} = \dfrac{25}{4}\pi}

A = A e A c = ( 551936 ( 347 ) 3 2 5 25 4 ) π = \implies A = A_{e} - A_{c} = (\dfrac{551936}{(347)^{\frac{3}{2}}\sqrt{5}} - \dfrac{25}{4})\pi = ( ( 2 2 ) 5 539 ( 347 ) 3 2 5 ( 5 2 ) 2 ) π = (\dfrac{(2^2)^{5} * 539}{(347)^{\frac{3}{2}}\sqrt{5}} - (\dfrac{5}{2})^2)\pi = ( ( α α ) β λ ω γ α β ( β α ) α ) π (\dfrac{(\alpha^{\alpha})^{\beta}\lambda}{\omega^{\frac{\gamma}{\alpha}}\sqrt{\beta}} - (\dfrac{\beta}{\alpha})^{\alpha})\pi α + β + λ + γ + ω = 896 \implies \alpha + \beta + \lambda + \gamma + \omega = \boxed{896} .

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...