Circles and \infty tangents

Geometry Level 4

A circle with center point O O and radius R c m R \space cm is drawn. Point P 1 P_1 is lying out of the circle such that O P 1 = 3 c m \overline{OP_1}=3cm . P 1 B \overline{P_1B} is a tangent to the circle.

Point P 2 , P 3 . . . ( t i l l ) P_2,P_3...(till \space\infty) are taken on P 1 B \overline{P_1B} such that n N P n + 1 \forall n\in\mathbb{N}\space P_{n+1} is mid point of P n B \overline{P_nB} .

n N P n A n \forall n\in\mathbb{N}\space\overline{P_nA_n} is a tangent to the circle different from P n B \overline{P_nB} .

I f n = 1 a r ( B P n A n O ) = 2 14 c m 2 If\space\sum_{n=1}^{\infty}ar(BP_nA_nO)=2\sqrt{14}cm^2

Find the sum of all possible values of R 2 R^2

Note:

  • a r ( X ) ar(X) is the area of plane figure X X


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Zakir Husain
Feb 7, 2021

n N B P n A n O \forall n\in\mathbb{N}\space BP_nA_nO will be a Right Kite

a r ( B P n A n O ) = O B × B P n = R × B P n . . . . . . . . . . [ 1 ] \therefore ar(BP_nA_nO)=\overline{OB}\times\overline{BP_n}=R\times\overline{BP_n}..........[1]

n N B P n + 1 = B P n 2 B P n = B P 1 2 n 1 . . . . . . . . . . [ 2 ] \because\forall n\in\mathbb{N}\space\overline{BP_{n+1}}=\frac{BP_n}{2}\therefore \overline{BP_n}=\frac{BP_1}{2^{n-1}}..........[2]

From [ 1 ] [1] and [ 2 ] [2]

a r ( B P n A n O ) = R × B P 1 2 n 1 ar(BP_nA_nO)=R\times\frac{BP_1}{2^{n-1}} n = 1 a r ( B P n A n O ) = n = 1 R × B P 1 2 n 1 \Rightarrow \sum_{n=1}^{\infty}ar(BP_nA_nO)=\sum_{n=1}^{\infty}R\times\frac{BP_1}{2^{n-1}} = R × B P 1 × n = 1 1 2 n 1 =R\times\overline{BP_1}\times\red{\sum_{n=1}^{\infty}\frac{1}{2^{n-1}}} = R × B P 1 × 2 2 R × B P 1 = 2 14 =R\times\overline{BP_1}\times\red{2}\Rightarrow\boxed{\cancel{2}R\times\overline{BP_1}=\cancel{2}\sqrt{14}} R × B P 1 = 14 \Rightarrow R\times\overline{BP_1}=\sqrt{14} R 2 × B P 1 2 = 14.......... [ 3 ] \Rightarrow R^2\times\overline{BP_1}^2=14..........[3] Applying Pythagorus Theorem on O B P 1 \triangle OBP_1 B P 1 2 = O P 1 2 R 2 = 9 R 2 \overline{BP_1}^2=\overline{OP_1}^2-R^2=9-R^2 Putting this in [ 3 ] [3] R 2 ( 9 R 2 ) = 14 R^2(9-R^2)=14 R 4 9 R 2 + 14 = 0 \Rightarrow R^4-9R^2+14=0 ( R 2 ) 2 9 ( R 2 ) + 14 = 0 \Rightarrow (R^2)^2-9(R^2)+14=0 ( R 2 7 ) ( R 2 2 ) = 0 \Rightarrow (R^2-7)(R^2-2)=0 R 2 { 7 , 2 } R^2\in\{7,2\} A n s w e r = 7 + 2 = 9 Answer=7+2=\boxed{9}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...