Circles and Squares!!

Level pending

In square A B C D ABCD , one of the vertices of square M P C N MPCN touches E F \overline{EF} at P P and E F \overline{EF} is tangent to the above circle at P P and the radius of the circle is half the side of the square M P C N MPCN .

Let A T A_{T} be the area of the green shaded regions.

If A T A A B C D = a + b c d \dfrac{A_{T}}{A_{ABCD}} = \dfrac{a + b\sqrt{c}}{d} , where a , b , c a,b,c and d d are coprime positive integers, find a + b + c + d a + b + c + d .


The answer is 370.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Dec 10, 2020

Using the above diagram C B = 2 a = 2 x + x 2 + x 2 \overline{CB} = \sqrt{2}a = \sqrt{2}x + \dfrac{x}{2} + \dfrac{x}{\sqrt{2}} ( 6 + 2 ) x = 4 a x = 4 a 6 + 2 \implies (6 + \sqrt{2})x = 4a \implies x = \dfrac{4a}{6 + \sqrt{2}} = 4 ( 6 2 ) 34 a = 12 2 2 17 a = \dfrac{4(6 - \sqrt{2})}{34}a = \dfrac{12 - 2\sqrt{2}}{17}a

P B = x 2 + x 2 = 2 + 2 2 2 x = ( 2 + 2 2 2 ) ( 12 2 2 17 ) a PB = \dfrac{x}{2} + \dfrac{x}{\sqrt{2}} = \dfrac{2 + \sqrt{2}}{2\sqrt{2}}x = (\dfrac{2 + \sqrt{2}}{2\sqrt{2}})(\dfrac{12 - 2\sqrt{2}}{17})a = ( 2 + 1 ) ( 6 2 ) 17 a = 5 2 + 4 17 a = \dfrac{(\sqrt{2} + 1)(6 - \sqrt{2})}{17}a = \dfrac{5\sqrt{2} + 4}{17}a

E B = 2 P B = 2 ( 5 2 + 4 17 ) a = 10 + 4 2 17 a \implies EB = \sqrt{2}PB = \sqrt{2}(\dfrac{5\sqrt{2} + 4}{17})a = \dfrac{10 + 4\sqrt{2}}{17}a

A T = a 2 ( x 2 + A E B F ) = a 2 ( x 2 + 1 2 E B 2 ) = \implies A_{T} = a^2 -(x^2 + A_{\triangle{EBF}}) = a^2 - (x^2 + \dfrac{1}{2}EB^2) =

( 1 ( ( 12 2 2 ) 2 289 + 2 ( 5 + 2 2 ) 2 289 ) ) a 2 (1 - (\dfrac{(12 - 2\sqrt{2})^2}{289}+ 2\dfrac{(5 + 2\sqrt{2})^2}{289}))a^2 = a 2 289 ( 289 218 + 8 2 ) = = \dfrac{a^2}{289}(289 - 218 + 8\sqrt{2}) =

71 + 8 2 289 a 2 A T A A B C D = 71 + 8 2 289 = \dfrac{71 + 8\sqrt{2}}{289}a^2 \implies \dfrac{A_{T}}{A_{ABCD}} = \dfrac{71 + 8\sqrt{2}}{289} = a + b c d a + b + c + d = 370 \dfrac{a + b\sqrt{c}}{d} \implies a + b + c + d = \boxed{370} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...