Circles in Geometric Progression? 3

Geometry Level 4

The two larger circles C A C_A and C B C_B have a radius of 2 2 and each intersect the other's centre. Another circle C 1 C_1 is drawn so that it is tangent to and inside both C A C_A and C B C_B . C n C_n is defined as the circle tangent to C n 1 , C A C_{n-1}, C_A and C B C_B (lying inside both C A C_A and C B C_B and with a radius smaller that C n 1 C_{n-1} ).

If the radius of C 6 C_6 can be written in the form 1 a \dfrac 1a , what is the value of a a ?


The answer is 87363.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Hassan Abdulla
Jan 29, 2020

S n 1 = ( k = 1 n 1 2 r k ) 1 S n = S n 1 + 2 r n ( 2 r n ) 2 = 1 2 + ( S n 1 + r n ) 2 r n = 1 2 3 ( S n 1 ) 2 2 + S n 1 n r n S n 1 1 1 2 1 3 5 3 3 1 33 19 11 4 1 451 71 41 5 1 6273 265 153 6 1 87363 S_{n-1} = \left (\sum_{k=1}^{n-1} 2 \cdot r_k \right ) - 1 \Rightarrow {\color{#D61F06}S_n = S_{n-1} + 2 \cdot r_n}\\ \left ( 2 - r_n \right )^2 = 1^2 + \left (S_{n-1} + r_n \right )^2 \Rightarrow {\color{#D61F06}r_n = \frac{1}{2} \cdot \frac{3-(S_{n-1})^2}{2+S_{n-1}}}\\ \begin{aligned} n & | & r_n & | & S_n \\ 1 & | & 1 & | & 1 \\ 2 & | & \frac{1}{3} & | & \frac{5}{3} \\ 3 & | & \frac{1}{33} & | & \frac{19}{11} \\ 4 & | & \frac{1}{451} & | & \frac{71}{41} \\ 5 & | & \frac{1}{6273} & | & \frac{265}{153} \\ 6 & | & \frac{1}{87363} & | \\ \end{aligned}

Chew-Seong Cheong
Jan 29, 2020

Let the centers of C A C_A , C B C_B , and C n C_n be A A , B B , and O n O_n respectively. We note that A B = 2 r 1 = 2 AB= 2r_1 = 2 all O n O_n 's are on a straight line, which is the perpendicular bisector of A B AB . The height O n O 1 O_nO_1 is r 1 + 2 r 2 + 2 r 3 + + 2 r n 1 + r n = 2 s n r 1 r n r_1 + 2r_2 + 2r_3 + \cdots + 2r_{n-1} + r_n = 2s_n - r_1 - r_n , where s n = k = 1 n r k s_n = \sum_{k=1}^n r_k . We also note that A O n AO_n is on a radius of C A C_A and that

( A O 1 ) 2 + ( O 1 O n ) 2 + r n = r A r 1 2 + ( 2 s n r 1 r n ) 2 + r n = 2 Note that r 1 = 1 1 + ( 2 s n 1 + r n 1 ) 2 = 2 r n and s n 1 = s n r n 1 + ( 2 s n 1 + r n 1 ) 2 = ( 1 ( r n 1 ) ) 2 Squaring both sides 1 + 4 s n 1 2 + 4 s n 1 ( r n 1 ) + ( r n 1 ) 2 = 1 2 ( r n 1 ) + ( r n 1 ) 2 r n = 1 2 s n 1 2 2 s n 1 + 1 s n 1 + r n = s n 1 + 1 2 s n 1 2 2 s n 1 + 1 s n = 3 s n 1 + 1 2 s n 1 + 1 \begin{aligned} \sqrt{(AO_1)^2+(O_1O_n)^2} + r_n & = r_A \\ \sqrt{r_1^2 + (2s_n-r_1-r_n)^2} + r_n & = 2 & \small \blue{\text{Note that }r_1 = 1} \\ \sqrt{1 + (2s_{n-1} + r_n-1)^2} & = 2 - r_n & \small \blue{\text{and }s_{n-1} = s_n - r_n} \\ 1 + (2s_{n-1} + r_n-1)^2 & = (1- (r_n-1))^2 & \small \blue{\text{Squaring both sides}} \\ 1 + 4s_{n-1}^2 + 4s_{n-1}(r_n-1) + (r_n-1)^2 & = 1 - 2(r_n-1) + (r_n-1)^2 \\ \implies r_n & = 1 - \frac {2s_{n-1}^2}{2s_{n-1}+1} \\ s_{n-1} + r_n & = s_{n-1} + 1 - \frac {2s_{n-1}^2}{2s_{n-1}+1} \\ \implies s_n & = \frac {3s_{n-1}+1}{2s_{n-1}+1} \end{aligned}

Then we have:

s 1 = 1 s 2 = 3 + 1 2 + 1 = 4 3 s 3 = 12 + 3 8 + 3 = 15 11 s 4 = 45 + 11 30 + 11 = 56 41 s 5 = 168 + 41 112 + 41 = 209 153 s 6 = 627 + 153 418 + 153 = 780 571 \begin{aligned} s_1 & = 1 \\ s_2 & = \frac {3+1}{2+1} = \frac 43 \\ s_3 & = \frac {12+3}{8+3} = \frac {15}{11} \\ s_4 & = \frac {45+11}{30+11} = \frac {56}{41} \\ s_5 & = \frac {168+41}{112+41} = \frac {209}{153} \\ s_6 & = \frac {627+153}{418+153} = \frac {780}{571} \end{aligned}

Therefore, r 6 = s 6 s 5 = 780 571 209 153 = 1 87363 r_6 = s_6 - s_5 = \dfrac {780}{571} - \dfrac {209}{153} = \dfrac 1{87363} a = 87363 \implies a = \boxed{87363} .

Isn't A O 1 2 + O 1 O n 2 + r n = r A \ \sqrt {AO_1^2 + O_1O_n ^2} + r_n = r_A ?

Nikola Alfredi - 1 year, 4 months ago

Log in to reply

Thanks. You are right. I have amended it.

Chew-Seong Cheong - 1 year, 4 months ago

Log in to reply

Y o u r e w e l c o m e . You're \ \ welcome.

Nikola Alfredi - 1 year, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...