Circles in Polar Coordinates too

Geometry Level pending

If a circle passes through the point ( r , θ ) (r', \theta') and touches the initial line a distance c c from the pole, and its polar equation is

r 2 2 c r + c 2 = λ ( r 2 2 c r + c 2 ) , r^2 - 2cr + c^2 = \lambda (r'^2 - 2cr' + c^2) \; ,

then find the value of λ \lambda in terms of r , r , θ , θ r,r', \theta, \theta' .


Check out my previous problem about circles in polar coordinates here .
r s i n θ r s i n θ \frac { rsin\theta }{ r'sin\theta ' } r s i n θ r s i n θ \frac { r'sin\theta ' }{ rsin\theta } r s i n θ r s i n θ \frac { rsin\theta ' }{ r'sin\theta } r s i n θ r s i n θ \frac { r'sin\theta }{ rsin\theta ' } None of these

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Vishnu C
Mar 18, 2015

L e t ( R , α ) b e t h e c o o r d i n a t e s o f t h e c e n t r e o f t h e c i r c l e a n d l e t a b e i t s r a d i u s , t h e n i t s e q u a t i o n w o u l d b e r 2 2 r R c o s ( θ α ) + ( R 2 α 2 ) = 0 c = R c o s α a n d a = R s i n α . r 2 2 r ( c c o s ( θ ) + a s i n ( θ ) ) + ( c 2 ) = 0. o r r 2 2 r c c o s ( θ ) + ( c 2 ) = 2 a r s i n ( θ ) . . . . ( i ) S i n c e i t p a s s e s t h r o u g h ( r , θ ) , w e h a v e r 2 2 r c c o s ( θ ) + ( c 2 ) = 2 a r s i n ( θ ) . . . . ( i i ) ( i ) ÷ ( i i ) r 2 2 r c c o s ( θ ) + ( c 2 ) r 2 2 r c c o s ( θ ) + ( c 2 ) = r s i n ( θ ) r s i n ( θ ) ( r 2 2 r c c o s ( θ ) + ( c 2 ) ) = r s i n ( θ ) r s i n ( θ ) ( r 2 2 r c c o s ( θ ) + ( c 2 ) ) λ = r s i n ( θ ) r s i n ( θ ) Let\quad (R,\alpha )\quad be\quad the\quad coordinates\quad of\quad the\quad centre\quad of\quad the\quad circle\\and\quad let\quad a\quad be\quad its\quad radius,\\ then\quad its\quad equation\quad would\quad be\quad { r }^{ 2 }-2rRcos(\theta -\alpha )+({ R }^{ 2 }{ -\alpha }^{ 2 })=0\\ \\ \therefore \quad c=Rcos\alpha \quad and\quad a=Rsin\alpha .\\ \Rightarrow { \quad r }^{ 2 }-2r(ccos(\theta )+asin(\theta ))+({ c }^{ 2 })=0.\\ or\quad { \quad r }^{ 2 }-2rccos(\theta )+({ c }^{ 2 })=2arsin(\theta )....(i)\\ Since\quad it\quad passes\quad through\quad (r',\theta '),\quad we\quad have\\ { \quad r' }^{ 2 }-2r'ccos(\theta ')+({ c }^{ 2 })=2ar'sin(\theta ')....(ii)\\ (i)\div (ii)\quad \Rightarrow \quad \frac { { \quad r }^{ 2 }-2rccos(\theta )+({ c }^{ 2 }) }{ { \quad r' }^{ 2 }-2r'ccos(\theta ')+({ c }^{ 2 }) } =\frac { rsin(\theta ) }{ r'sin(\theta ') } \\ \Rightarrow \quad ({ r }^{ 2 }-2rccos(\theta )+({ c }^{ 2 }))=\frac { rsin(\theta ) }{ r'sin(\theta ') } ({ r' }^{ 2 }-2r'ccos(\theta ')+({ c }^{ 2 }))\\ \Rightarrow \quad \lambda \quad =\quad \frac { rsin(\theta ) }{ r'sin(\theta ') }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...