If a circle passes through the point ( r ′ , θ ′ ) and touches the initial line a distance c from the pole, and its polar equation is
r 2 − 2 c r + c 2 = λ ( r ′ 2 − 2 c r ′ + c 2 ) ,
then find the value of λ in terms of r , r ′ , θ , θ ′ .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
L e t ( R , α ) b e t h e c o o r d i n a t e s o f t h e c e n t r e o f t h e c i r c l e a n d l e t a b e i t s r a d i u s , t h e n i t s e q u a t i o n w o u l d b e r 2 − 2 r R c o s ( θ − α ) + ( R 2 − α 2 ) = 0 ∴ c = R c o s α a n d a = R s i n α . ⇒ r 2 − 2 r ( c c o s ( θ ) + a s i n ( θ ) ) + ( c 2 ) = 0 . o r r 2 − 2 r c c o s ( θ ) + ( c 2 ) = 2 a r s i n ( θ ) . . . . ( i ) S i n c e i t p a s s e s t h r o u g h ( r ′ , θ ′ ) , w e h a v e r ′ 2 − 2 r ′ c c o s ( θ ′ ) + ( c 2 ) = 2 a r ′ s i n ( θ ′ ) . . . . ( i i ) ( i ) ÷ ( i i ) ⇒ r ′ 2 − 2 r ′ c c o s ( θ ′ ) + ( c 2 ) r 2 − 2 r c c o s ( θ ) + ( c 2 ) = r ′ s i n ( θ ′ ) r s i n ( θ ) ⇒ ( r 2 − 2 r c c o s ( θ ) + ( c 2 ) ) = r ′ s i n ( θ ′ ) r s i n ( θ ) ( r ′ 2 − 2 r ′ c c o s ( θ ′ ) + ( c 2 ) ) ⇒ λ = r ′ s i n ( θ ′ ) r s i n ( θ )