Circles in Polar Coordinates

Calculus Level 5

The line 1 r = A cos θ + B sin θ \dfrac { 1 }{ r } =A\cos\theta +B\sin\theta touches the circle r = 2 a cos θ r=2a\cos\theta then,

a 2 B 2 + 2 a B = 1 { a }^{ 2 }B^{ 2 }+2aB=1 a 2 B 2 + 2 a A = 1 { a }^{ 2 }B^{ 2 }+2aA=1 a 2 A 2 + 2 a B = 1 { a }^{ 2 }A^{ 2 }+2aB=1 a 2 A 2 + 2 a A = 1 { a }^{ 2 }A^{ 2 }+2aA=1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Vishnu C
Mar 18, 2015

1 r = A c o s θ + B s i n θ \frac { 1 }{ r } =Acos\theta +Bsin\theta A r c o s θ + B r s i n θ = 1 A x + B y = 1 a s r a d i u s o f c i r c l e i s a , c e n t r e l i e s o n ( a , 0 ) . S h i f t i n g t h e o r i g i n t o t h e c e n t r e b y p u t t i n g x = X + a , w e g e t y = A B X + 1 A a B I n a g e n e r a l t a n g e n t e q u a t i o n y = m x + c t o a c i r c l e x 2 + y 2 = a 2 c = a 1 + m 2 , 1 + A 2 a 2 2 A a = a 2 B 2 + a 2 A 2 a 2 B 2 + 2 A a = 1. \Rightarrow Arcos\theta +Brsin\theta =1\\ \Rightarrow Ax+By=1\\ as\quad radius\quad of\quad circle\quad is\quad a,\quad centre\quad lies\quad on\quad (a,0). \\Shifting\quad the\quad origin\quad to\quad the\quad centre\quad by\quad putting\quad x=X+a,\\ we\quad get\quad \\ y=-\frac { A }{ B } X+\frac { 1-Aa }{ B } \\ In\quad a\quad general\quad tangent\quad equation\quad y=mx+c \\ to\quad a\quad circle\quad x^{2}+y^{2} = {a}^{2} \\c=a\sqrt { 1+{ m }^{ 2 } } ,\\ \Rightarrow 1+{A}^2{ a }^{ 2 }-2Aa={ a }^{ 2 }{ B }^{ 2 }+{ a }^{ 2 }{ A }^{ 2 }\\ \therefore \quad { a }^{ 2 }{ B }^{ 2 }+2Aa=1.\\

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...