Circling complex!

Algebra Level 4

Let complex numbers α \alpha and 1 α ˉ \frac { 1 }{ \bar { \alpha } } lies on circles ( x x 0 ) 2 + ( y y 0 ) 2 = r 2 { \left( x-{ x }_{ 0 } \right) }^{ 2 }+{ \left( y-{ y }_{ 0 } \right) }^{ 2 }={ r }^{ 2 } and ( x x 0 ) 2 + ( y y 0 ) 2 = 4 r 2 { \left( x-{ x }_{ 0 } \right) }^{ 2 }+{ \left( y-{ y }_{ 0 } \right) }^{ 2 }=4{ r }^{ 2 } respectively.

If z 0 = x 0 + i y 0 { z }_{ 0 }={ x }_{ 0 }+i{ y }_{ 0 } satisfies the equation 2 z 0 2 = r 2 + 2 2{ \left| { z }_{ 0 } \right| }^{ 2 }={ r }^{ 2 }+2 then find the value of α \left| \alpha \right|


The answer is 0.378.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mudit Bansal
Feb 20, 2015

Given: z z 0 = r a n d z z 0 = 2 r \left| z-{ z }_{ 0 } \right| =r\quad and\quad \left| z-{ z }_{ 0 } \right| =2r Now, α \alpha and 1 α ˉ \frac { 1 }{ \bar { \alpha } } satisfies these equations in respective order.Therefore, on substituting and squaring we get: ( α z 0 ) ( α ˉ z 0 ˉ ) = r 2 a n d ( 1 α ˉ z 0 ) ( 1 α z 0 ˉ ) = 4 r 2 \left( \alpha -{ z }_{ 0 } \right) \left( \bar { \alpha } -\bar { { z }_{ 0 } } \right) ={ r }^{ 2 }\quad and\quad \left( \frac { 1 }{ \bar { \alpha } } -{ z }_{ 0 } \right) \left( \frac { 1 }{ \alpha } -\bar { { z }_{ 0 } } \right) =4{ r }^{ 2 } On subtracting the two equations we get: α 2 1 + z 0 2 ( 1 α 2 ) = r 2 ( 1 4 α 2 ) { \left| \alpha \right| }^{ 2 }-1+{ \left| { z }_{ 0 } \right| }^{ 2 }\left( 1-{ \left| \alpha \right| }^{ 2 } \right) ={ r }^{ 2 }\left( 1-{ 4\left| \alpha \right| }^{ 2 } \right) Now given that: z 0 2 = r 2 + 2 2 { \left| { z }_{ 0 } \right| }^{ 2 }=\frac { { r }^{ 2 }+2 }{ 2 } Hence,on substituting and simplifying we get: α 2 = 1 7 α = 1 7 0.378 { \left| \alpha \right| }^{ 2 }=\frac { 1 }{ 7 } \\ \left| \alpha \right| =\frac { 1 }{ \sqrt { 7 } } \simeq \boxed { 0.378 }

i think we can apply a little trigonometry notice alpha and 1/alpha (conjugate) make same angles hence a part of same line and then use cosine formula

Can you elaborate on this?

Pi Han Goh - 5 years, 6 months ago

Log in to reply

mod(alpha-z)^2= mod(alpha)^2+mod(z)^2 -2* mod(alpha)mod(z)cos(theta) A,
where theta is the angle between alpha and z. The angle will be the same between 1/alpha(bar) and z. Similarly you can write mod(1/alpha(bar)-z)^2= mod(1/alpha(bar))^2+mod(z)^2-2 mod(1/alpha(bar))mod(z)cos(theta) B. Now from the equations A and B eliminate cos theta and use the fact that mod(alpha(bar))=mod(alpha) and 2 mod(z)=r^2+2 you should get after rearranging (7 *mod(alpha)^2 -1)(mod (z)^2 -1)=0. If mod(z)^2=1 then r=0 it will be a degenerate case so mod(alpha)=1/sqrt7 PS: The computation part is a bit lengthy but if we attempt it carefully the solution is shorter and creative hope that helps, sorry I cannot draw a diagram to show you but it is not tough to visualize the geometric picture

Srivats Anshumaali - 5 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...