Circumcenter Cevians Take 2

Geometry Level 4

If A B C \triangle ABC has cevians A A = 26 26 279 AA' = 26\frac{26}{279} , B B = 24 16 21 BB' = 24\frac{16}{21} , and C C = 22 174 323 CC' = 22\frac{174}{323} through its circumcenter O O , then find its area.


The answer is 336.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Mark Hennings
Jul 7, 2019

If R R is the outradius, define u = A A 1 R u = AA_1-R and v = B B 1 R v = BB_1-R .

Set up a coordinate system with the triangle outcentre at the origin, and with B B having coordinates ( R , 0 ) (-R,0) . Then B 1 B_1 has coordinates ( v , 0 ) (v,0) , and A A and C C both lie on a straight line through B 1 B_1 . Without loss of generality, we can assume that A A lies above the x x -axis, and so that A O B 1 = θ \angle AOB_1 = \theta lies between 0 0 and π \pi . Then A A and C C are the points of intersection of the circle and line x 2 + y 2 = R 2 y = tan θ ( x u ) x^2 + y^2 \; = \; R^2 \hspace{2cm} y \; = \; \tan\theta(x-u) and hence we have coordinates A ( v sin 2 θ + cos θ R 2 v 2 sin 2 θ , v sin θ cos θ + sin θ R 2 v 2 sin 2 θ ) C ( v sin 2 θ cos θ R 2 v 2 sin 2 θ , v sin θ cos θ sin θ R 2 v 2 sin 2 θ ) \begin{aligned} A&\;\;\big(v\sin^2\theta + \cos\theta\sqrt{R^2 - v^2\sin^2\theta},-v\sin\theta\cos\theta + \sin\theta\sqrt{R^2 - v^2\sin^2\theta}\big) \\ C&\;\;\big(v\sin^2\theta - \cos\theta\sqrt{R^2 - v^2\sin^2\theta},-v\sin\theta\cos\theta - \sin\theta\sqrt{R^2 - v^2\sin^2\theta}\big) \end{aligned} and A 1 A_1 will have coordinates A 1 ( u R ( v sin 2 θ + cos θ R 2 v 2 sin 2 θ ) , u R ( v sin θ cos θ + sin θ R 2 v 2 sin 2 θ ) ) A_1\;\; \big(-\tfrac{u}{R}\big(v\sin^2\theta + \cos\theta\sqrt{R^2 - v^2\sin^2\theta}\big),-\tfrac{u}{R}\big(-v\sin\theta\cos\theta + \sin\theta\sqrt{R^2 - v^2\sin^2\theta}\big)\big) and from this it follows that B B , A 1 A_1 and C C will be collinear precisely when R ( R + u ) v cos θ + ( R 2 R u 2 u v ) R 2 v 2 sin 2 θ = 0 ( ) R(R+u)v \cos\theta + (R^2 - Ru - 2uv)\sqrt{R^2 - v^2\sin^2\theta} \; = \; 0 \hspace{2cm} (\star) It is a fairly standard result that 1 A A 1 + 1 B B 1 + 1 C C 1 = 2 R \frac{1}{AA_1} + \frac{1}{BB_1} + \frac{1}{CC_1} \; = \; \frac{2}{R} where R R is the outradius. With A A 1 = 26 26 279 AA_1 = 26\tfrac{26}{279} , B B 1 = 24 16 21 BB_1 = 24\tfrac{16}{21} and C C 1 = 22 224 323 CC_1 = 22\tfrac{224}{323} we deduce that R = 65 4 R = \tfrac{65}{4} . Putting t = tan 1 2 θ t = \tan\tfrac12\theta , the equation ( ) (\star) squares to give 0 = 3969 t 4 8962 t 2 + 3969 = ( 7 t 9 ) ( 7 t + 9 ) ( 9 t 7 ) ( 9 t + 7 ) 0 \; = \; 3969t^4 - 8962 t^2 + 3969 \; = \; (7t-9)(7t+9)(9t-7)(9t+7) Since 0 < θ < π 0 < \theta < \pi , we have t = 7 9 t = \tfrac79 or 9 7 \tfrac97 . It turns out that only t = 7 9 t = \tfrac79 is a proper solution of ( ) (\star) --- the other solution is introduced by the squaring process, and so we deduce that we have coordinates A ( 595 52 , 150 13 ) B ( 65 4 , 0 ) C ( 91 20 , 78 5 ) A \; \big(\tfrac{595}{52}, \tfrac{150}{13}\big) \hspace{1cm} B \; \big(-\tfrac{65}{4},0\big) \hspace{1cm} C \; \big(\tfrac{91}{20}, -\tfrac{78}{5}\big) which makes the area of the triangle equal to 336 \boxed{336} .

Nice solution! I believe there's a typo, though, it should say, "we deduce that R = 65 4 R = \frac{65}{4} ". (The R R value is corrected later on when it is put into your B B coordinates.)

David Vreken - 1 year, 11 months ago
Yuriy Kazakov
Jul 28, 2019

I use

1.Circumcenter.html

2. ExactTrilinearCoordinates.html

and I find formula for length for the cevians, and find lengths sides of triangle by Mathcad. And after I use HeronsFormula .

David Vreken
Jul 8, 2019

Let r = A O = B O = C O r = AO = BO = CO . Since an inscribed angle is half of a central angle that subtends the same arc, B O C = 2 A \angle BOC = 2A , so B O C = C O B = 180 ° 2 A \angle BOC' = \angle COB' = 180° - 2A (from the straight line), and C B O = B C O = 90 ° A \angle CBO = \angle BCO = 90° - A (from the isosceles triangle B O C \triangle BOC ). Similarly, A O C = C O A = 180 ° 2 B \angle AOC' = \angle COA' = 180° - 2B and A O B = B O A = 180 ° 2 C \angle AOB' = \angle BOA' = 180° - 2C , and A C O = C A O = 90 ° B \angle ACO = \angle CAO = 90° - B and A B O = B A O = 90 ° C \angle ABO = \angle BAO = 90° - C . Using the law of sines on B O A \triangle BOA' gives O A = r cos A cos ( B C ) OA' = \frac{r \cos A}{\cos(B - C)} . Similarly, O B = r cos B cos ( A C ) OB' = \frac{r \cos B}{\cos(A - C)} and O C = r cos C cos ( A B ) OC' = \frac{r \cos C}{\cos(A - B)} . Therefore, A A = A O + O A = r + r cos A cos ( B C ) = r ( 1 + cos A sin B sin C + cos B cos C ) AA' = AO + OA' = r + \frac{r\cos A}{\cos(B - C)} = r(1 + \frac{\cos A}{\sin B \sin C + \cos B \cos C}) . Similarly, B B = r ( 1 + cos B sin A sin C + cos A cos C ) BB' = r(1 + \frac{\cos B}{\sin A \sin C + \cos A \cos C}) and C C = r ( 1 + cos C sin A sin B + cos A cos B ) CC' = r(1 + \frac{\cos C}{\sin A \sin B + \cos A \cos B}) .

Using the theorem 1 A A + 1 B B + 1 C C = 2 r \frac{1}{AA'} + \frac{1}{BB'} + \frac{1}{CC'} = \frac{2}{r} (see theorem and proof here ) and the given values for A A AA' , B B BB' , and C C CC' , r r solves to r = 65 4 r = \frac{65}{4} .

Letting x = cos A x = \cos A , y = cos B y = \cos B , then sin A = 1 x 2 \sin A = \sqrt{1 - x^2} and sin B = 1 y 2 \sin B = \sqrt{1 - y^2} , and cos C = cos ( 180 ° ( A + B ) ) = cos ( A + B ) = sin A sin B cos A cos B = ( 1 x 2 ) ( 1 y 2 ) x y \cos C = \cos(180° - (A + B)) = -\cos(A + B) = \sin A \sin B - \cos A \cos B = \sqrt{(1 - x^2)(1 - y^2)} - xy and sin C = sin ( 180 ° ( A + B ) ) = sin ( A + B ) = sin A cos B + cos A sin B = y 1 x 2 + x 1 y 2 \sin C = \sin(180° - (A + B)) = \sin(A + B) = \sin A \cos B + \cos A \sin B = y\sqrt{1 - x^2} + x\sqrt{1 - y^2} .

Substituting these values in the A A AA' and B B BB' equations gives:

A A = 7280 279 = 65 4 ( 1 + x 1 y 2 ( y 1 x 2 + x 1 y 2 ) + y ( ( 1 x 2 ) ( 1 y 2 ) x y ) ) AA' = \frac{7280}{279} = \frac{65}{4}\bigg(1 + \frac{x}{\sqrt{1 - y^2}(y\sqrt{1 - x^2} + x\sqrt{1 - y^2}) + y(\sqrt{(1 - x^2)(1 - y^2)} - xy)}\bigg)

B B = 520 21 = 65 4 ( 1 + y 1 x 2 ( y 1 x 2 + x 1 y 2 ) + x ( ( 1 x 2 ) ( 1 y 2 ) x y ) ) BB' = \frac{520}{21} = \frac{65}{4}\bigg(1 + \frac{y}{\sqrt{1 - x^2}(y\sqrt{1 - x^2} + x\sqrt{1 - y^2}) + x(\sqrt{(1 - x^2)(1 - y^2)} - xy)}\bigg)

which has two solutions ( x , y ) = ( 3 5 , 33 65 ) (x, y) = (-\frac{3}{5}, -\frac{33}{65}) and ( x , y ) = ( 3 5 , 33 65 ) (x, y) = (\frac{3}{5}, \frac{33}{65}) . However, ( x , y ) = ( 3 5 , 33 65 ) (x, y) = (-\frac{3}{5}, -\frac{33}{65}) gives two obtuse angles for A \angle A and B \angle B , which is not possible, so ( x , y ) = ( 3 5 , 33 65 ) (x, y) = (\frac{3}{5}, \frac{33}{65}) .

Using these values x = 3 5 x = \frac{3}{5} and y = 33 65 y = \frac{33}{65} gives sin A = 1 x 2 = 1 ( 3 5 ) 2 = 4 5 \sin A = \sqrt{1 - x^2} = \sqrt{1 - (\frac{3}{5})^2} = \frac{4}{5} , sin B = 1 y 2 = 1 ( 33 65 ) 2 = 56 65 \sin B = \sqrt{1 - y^2} = \sqrt{1 - (\frac{33}{65})^2} = \frac{56}{65} , and sin C = y 1 x 2 + x ( 1 y 2 ) = 33 65 1 ( 3 5 ) 2 + 3 5 ( 1 ( 33 65 ) 2 ) = 12 13 \sin C = y\sqrt{1 - x^2} + x\sqrt(1 - y^2) = \frac{33}{65}\sqrt{1 - (\frac{3}{5})^2} + \frac{3}{5}\sqrt(1 - (\frac{33}{65})^2) = \frac{12}{13} .

Therefore, the area of A B C = 2 r 2 sin A sin B sin C = 2 ( 65 4 ) 2 4 5 56 65 12 13 = 336 \triangle ABC = 2r^2 \sin A \sin B \sin C = 2 \cdot (\frac{65}{4})^2 \cdot \frac{4}{5} \cdot \frac{56}{65} \cdot \frac{12}{13} = \boxed{336} .

Jon Haussmann
Jul 8, 2019

I don't have a solution, but just for the record, the sides of the triangle are B C = 26 BC = 26 , A C = 28 AC = 28 , and A B = 30 AB = 30 .

..which means that A B C ABC is a 10 , 24 , 26 ) 10,24,26) right-angled triangle stuck together with a 18 , 24 , 30 ) 18,24,30) right-angled triangle. We can choose coordinates A ( 10 , 0 ) A\;(-10,0) , B ( 0 , 24 ) B\; (0,24) and C ( 18 , 0 ) C\;(18,0) , obtaining the outcentre at 4 , 33 4 ) 4,\tfrac{33}{4}) and solving easy simultaneous equations to obtain, for example, B ( 128 21 , 0 ) B’\;(\tfrac{128}{21},0) and C ( 3042 323 , 3690 323 ) C’\;(\tfrac{3042}{323},\tfrac{3690}{323}) , and so on. I would still like to find a more elegant derivation than mine!

Mark Hennings - 1 year, 11 months ago

Log in to reply

Yes, those triangle sides are correct and those are the two right-angled triangles I combined to make the problem. I basically solved the problem by forcing two cevians to be expressed in terms of x = cos A x = \cos A and y = cos B y = \cos B , but the equations were messy.

David Vreken - 1 year, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...