Circumcenter Geometry

Geometry Level 3

In A B C \triangle ABC , A B = 14 , A C = 13 AB=14,AC=13 , and B C = 15 BC=15 . Let X X be the reflection of A A over B B , and let C X CX intersect the circumcircle of A B C \triangle ABC again at D D . If C D CD can be expressed in simplest form as a b \dfrac{a}{\sqrt{b}} , what is the value of a + b a+b ?


The answer is 954.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

By cosine rule , we have:

{ A B C : 1 5 2 = 1 4 2 + 1 3 2 2 ( 14 ) ( 13 ) cos A . . . ( 1 ) A X C : C X 2 = 2 8 2 + 1 3 2 2 ( 28 ) ( 13 ) cos A . . . ( 2 ) \begin{cases} \triangle ABC: & 15^2 = 14^2 + 13^2 - 2(14)(13)\cos A & ...(1) \\ \triangle AXC: & |CX|^2 = 28^2 + 13^2 - 2(28)(13)\cos A & ...(2) \end{cases}

( 2 ) 2 ( 1 ) : C X 2 2 ( 1 5 2 ) = 2 ( 1 4 2 ) 1 3 2 C X = 673 \begin{aligned} (2)-2(1): \quad |CX|^2 - 2(15^2) & = 2(14^2) - 13^2 \\ \implies |CX| & = \sqrt {673} \end{aligned}

Since the chord A B AB and chord C D CD meet externally at X X , we have:

C X × D X = A X × B X 673 ( 673 C D ) = 28 ( 14 ) C D = 281 673 \begin{aligned} |CX|\times |DX| & = |AX| \times |BX| \\ \sqrt {673}(\sqrt {673}-|CD|) & = 28(14) \\ \implies |CD| & = \frac {281}{\sqrt {673}} \end{aligned}

Therefore a + b = 281 + 673 = 954 a+b=281+673 = \boxed{954} .

C B \overline {CB} is the median of A C X \triangle {ACX} . So ( A C ) 2 + ( C X ) 2 = 2 ( B X ) 2 + 2 ( C B ) 2 (\overline {AC})^2+(\overline {CX})^2=2(\overline {BX})^2+2(\overline {CB})^2 , or C X = 673 \overline {CX}=\sqrt {673} . Now, the chords A B \overline {AB} and C D \overline {CD} meet at X X . So C X × D X = A X × B X = 28 × 14 = 392 |\overline {CX}|\times |\overline {DX}|=|\overline {AX}|\times |\overline {BX}|=28\times 14=392 . Or 673 × ( 673 C D ) = 392 \sqrt {673}\times (\sqrt {673}-|\overline {CD}|)=392 , or 673 × C D = 673 392 = 281 \sqrt {673}\times |\overline {CD}|=673-392=281 . Therefore C D = 281 673 |\overline {CD}|=\dfrac{281}{\sqrt {673}} . Hence a = 281 , b = 673 a=281, b=673 and a + b = 281 + 673 = 954 a+b=281+673=\boxed {954}

I did the same way.

Nikola Alfredi - 1 year, 3 months ago
Aops Master
Feb 3, 2020

Let E E be the foot of the altitude from C C to A B AB . By Heron's, we find that [ A B C ] = 84 [ABC]=84 , or C E = 12 CE=12 . We can see that A C E \triangle ACE is a 5 12 13 5-12-13 triangle, so A E = 5 AE=5 . Then X C = 1 2 2 + 2 3 2 = 673 XC=\sqrt{12^2+23^2}=\sqrt{673} . Let X D = p XD=p and D C = q DC=q . Then p + q = 673 p+q=\sqrt{673} and, by PoP, p ( p + q ) = 14 28 = 392 p 673 = 392 p(p+q)=14\cdot28=392\rightarrow p\sqrt{673}=392 , so p = 392 673 p=\frac{392}{\sqrt{673}} , and q = 673 p = 281 673 q=\sqrt{673}-p=\frac{281}{\sqrt{673}} , so our answer is 281 + 673 = 954 281+673=\boxed{954} .

Nice solution! Small typo - I think you mean Δ A C E \Delta ACE is a 5 12 13 5-12-13 triangle.

Chris Lewis - 1 year, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...