Circumcircles

Geometry Level 3

Consider A B C \triangle ABC with circumcenter O O and point M M the reflection of point O O across line A C AC . Line A M AM and line B C BC are extended to meet at point D D . If r 1 r_1 , r 2 r_2 , and r 3 r_3 are the circumradii of A B C \triangle ABC , A B D \triangle ABD , and A C D \triangle ACD respectively, what is r 1 : r 2 : r 3 r_1 : r_2 : r_3 ?

S i n B : C o s A : S i n C SinB : CosA : SinC S i n A : S i n C : C o s B SinA : SinC : CosB C o s A : S i n C : S i n B CosA : SinC : SinB S i n C : C o s B : S i n A SinC : CosB : SinA S i n B : S i n A : C o s C SinB : SinA : CosC C o s C : S i n B : S i n A CosC : SinB : SinA

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

It is easy to get A D B = 90 ° A \angle {ADB}=90\degree -A . So A C = 2 r 3 cos A \overline {AC}=2r_3\cos {A} . Also, A C = 2 r 1 sin B \overline {AC}=2r_1\sin { B} . Therefore r 1 r 3 = cos A sin B \dfrac{r_1}{r_3}=\dfrac{\cos {A}}{\sin {B}} . Again, A B = 2 r 2 cos A = 2 r 1 sin C \overline {AB}=2r_2\cos {A}=2r_1\sin {C} . So r 1 r 2 = cos A sin C \dfrac{r_1}{r_2}=\dfrac{\cos {A}}{\sin {C}} . Therefore r 1 : r 2 : r 3 = cos A : sin C : sin B r_1:r_2:r_3=\cos {A}:\sin {C}:\sin {B}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...