Circumscribes many notions.

Let [ 2 1 1 0 ] n = ( a i j ( n ) ) \left[ \begin{matrix} 2 & 1 \\ 1 & 0 \end{matrix} \right]^n=\left( a_{ij}(n) \right)

If ( lim n a 12 ( n ) a 22 ( n ) ) 2 = A + B ( A , B N ) \left( \displaystyle \lim_{n \to \infty} \dfrac{a_{12}(n)}{a_{22}(n)} \right)^2=\sqrt{A}+\sqrt{B} \quad \quad \left( A,B \in \mathbb{N}\right)

then find the value of A + B A+B .

Notation : a i j ( n ) a_{ij}(n) denotes the element in the i th i^{\text{th}} row and j th j^{\text{th}} column of matrix A A .

Practice the set Target JEE_Advanced - 2015 and boost up your preparation.


The answer is 17.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tijmen Veltman
Mar 31, 2015

For a symmetric matrix [ a b b c ] \left[\begin{matrix} a & b\\ b & c \end{matrix}\right] we have:

[ a b b c ] [ 2 1 1 0 ] = [ 2 a + b a a b ] . \left[\begin{matrix} a & b\\ b & c \end{matrix}\right] \left[\begin{matrix} 2 & 1\\ 1 & 0 \end{matrix}\right] = \left[\begin{matrix} 2a+b & a\\ a & b \end{matrix}\right].

Hence ( a i j ( n ) ) = [ a n + 1 a n a n a n 1 ] (a_{ij}(n))= \left[\begin{matrix} a_{n+1} & a_n\\ a_n & a_{n-1} \end{matrix}\right] where a 0 = 0 , a 1 = 1 a_0=0,a_1=1 and a n + 1 = 2 a n + a n 1 a_{n+1}=2a_n+a_{n-1} for n N n\in\mathbb{N} . Setting x : = lim n a 12 ( n ) a 22 ( n ) = a n a n 1 x:=\lim_{n\to\infty}\frac{a_{12}(n)}{a_{22}(n)}=\frac{a_n}{a_{n-1}} , we have x = 2 + 1 / x x=2+1/x , hence x 2 2 x 1 = 0 x^2-2x-1=0 giving x = 1 + 2 x=1+\sqrt2 (the negative solution can be dismissed as a n > 0 a_n>0 for all n n ). Therefore ( lim n a 12 ( n ) a 22 ( n ) ) 2 = x 2 = 3 + 2 2 = 8 + 9 \left(\lim_{n\to\infty}\frac{a_{12}(n)}{a_{22}(n)}\right)^2=x^2=3+2\sqrt2=\sqrt8+\sqrt9 , so A + B = 8 + 9 = 17 A+B=8+9=\boxed{17} .

Nice method. I did it the same way.

Raghav Vaidyanathan - 6 years, 2 months ago

Exactly same way...Upvoted!!!Liked the problem a lot!!

rajdeep brahma - 3 years, 2 months ago

Log in to reply

Hmmmm nice

Md Zuhair - 3 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...