Circumsphere of a tetrahedron

Geometry Level 4

The volume of the regular tetrahedron which inscribed in a unit sphere is in the form of a b c \dfrac{a\sqrt{b}}{c} , where a a and c c are co-prime and b b is square-free. Find a + b + c a+b+c .


The answer is 38.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

A tetrahedron is a equilateral-triangular pyramid. Let the side length A B = B C = C D = . . . = x AB=BC=CD=...=x . Then the height of the equilateral triangle h = x sin 6 0 = 3 2 x h_\triangle = x \sin 60^\circ = \dfrac {\sqrt 3}2 x . The area of the triangle A = 1 2 x 2 sin 6 0 = 3 4 x 2 A_\triangle = \dfrac 12 x^2 \sin 60^\circ = \dfrac {\sqrt 3}4 x^2 .

The altitude of the tetrahedron A H = h AH = h has its foot at the centroid of the base triangle H H . Hence C H = 2 3 × h = x 3 CH = \dfrac 23 \times h_\triangle = \dfrac x{\sqrt 3} and h 2 = x 2 ( x 3 ) 2 h^2 = x^2 - \left(\dfrac x{\sqrt 3}\right)^2 , h = 2 3 x \implies h = \sqrt{\dfrac 23}x . Then the volume of the tetrahedron, V = 1 3 h A = 1 3 × 2 3 x × 3 4 x 2 = x 3 6 2 V = \dfrac 13 h A_\triangle = \dfrac 13 \times \sqrt{\dfrac 23}x \times \dfrac {\sqrt 3}4 x^2 = \dfrac {x^3}{6\sqrt 2} .

We note that A O AO is the radius of the sphere which is 1. Let O H = y OH = y . Then

{ h = 2 3 x = 1 + y . . . ( 1 ) O H 2 + C H 2 = C O 2 y 2 + x 2 3 = 1 x 2 3 = 1 y 2 . . . ( 2 ) \begin{cases} h = \sqrt{\dfrac 23}x = 1 + y & ...(1) \\ OH^2 + CH^2 = CO^2 \\ y^2 + \dfrac {x^2}3 = 1 \\ \dfrac {x^2}3 = 1-y^2 & ...(2) \end{cases}

Now squaring equation ( 1 ) (1) both sides:

2 3 x 2 = y 2 + 2 y + 1 Note ( 2 ) : x 2 3 = 1 y 2 2 2 y 2 = y 2 + 2 y + 1 3 y 2 + 2 y 1 = 0 ( 3 y 1 ) ( y + 1 ) = 0 y = 1 3 Note that y > 0 \begin{aligned} \color{#3D99F6} \frac 23 x^2 & = y^2 + 2y + 1 & \small \color{#3D99F6} \text{Note }(2): \ \frac {x^2}3 = 1 - y^2 \\ 2-2y^2 & = y^2 + 2y + 1 \\ 3y^2 + 2y - 1 & = 0 \\ (3y - 1)(y +1) & = 0 \\ \implies y & = \frac 13 & \small \color{#3D99F6} \text{Note that } y > 0 \end{aligned}

From ( 1 ) (1) , 2 3 x 2 = 1 + 1 3 \sqrt{\dfrac 23}x^2 = 1+\dfrac 13 , x = 8 3 \implies x = \sqrt {\dfrac 83} . Then V = x 3 6 2 = 8 8 3 3 6 2 = 8 9 3 = 8 3 27 V = \dfrac {x^3}{6\sqrt 2} = \dfrac {8\sqrt 8}{3\sqrt 3 \cdot 6 \sqrt 2} = \dfrac 8{9\sqrt 3} = \dfrac {8\sqrt 3}{27} . Therefore, a + b + c = 8 + 3 + 27 = 38 a+b+c = 8+3+27 = \boxed{38} .


Image credit: Wikipedia

T h e s i x s i d e s S o f a r e g u l a r t e t r a h e d r o n a r e f a c e d i a g o n a l s o f t h e c i r c u m s c r i b i n g c u b e . S o t h e s i d e s o f t h e c u b e a r e S 2 . B u t b o t h h a v e t h e s a m e c i r c u m s p h e r e r a d i u s R . A n d R f o r c u b = 1 2 ( i t s d i a g o n a l ) . R = 1 2 3 S 2 . B u t o u r R = 1 , 1 = S 3 2 2 , S = 8 3 = 2 3 6 . T e t r a h e d r o n v o l u m e , V = 1 3 ( S 2 ) 3 = 1 3 ( 2 3 6 2 ) 3 . V = 8 81 ( 3 ) 3 = 8 3 27 = a b c . S o a + b + c = 8 + 3 + 27 = 38. The~six~sides~S~of~a~regular~tetrahedron~are~face~diagonals~of~the~circumscribing~cube.\\ So~the~sides~of~the~cube~are~~\dfrac S {\sqrt2}.\\ But~both~have~the~same~circumsphere~radius~R.\\ And~R~for~cub~=\frac 1 2*(its~diagonal).\\ \therefore~R=\frac 1 2*\sqrt3* {\dfrac S {\sqrt2}}.\\ But~our~R=1,~~\therefore~1=S*\dfrac{\sqrt3}{2\sqrt2},~~\implies~S=\sqrt{\dfrac 8 3 }=\frac 2 3*\sqrt6.\\ Tetrahedron~volume~,V=\dfrac 1 3*\Big (\dfrac S{\sqrt2} \Big)^3=\dfrac 1 3*\Big(\dfrac 2 3 *\dfrac{\sqrt6}{\sqrt2} \Big )^3.\\ \therefore~V=\dfrac 8 {81}*(\sqrt3)^3=\dfrac{8*\sqrt3}{27}= \dfrac{a*\sqrt b} c.\\ So ~a+b+c=8+3+27=\color{#D61F06}{38}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...