Circus of Luck

Larry enters a newly opened circus which houses 11 11 tents (Tent A , B , C , . . . , K A, B, C, ... , K ) that each features a free-to-play game. The game of Tent A A involves a computer that will flash one from 2 2 symbols. If the contestant guesses what symbol will be flashed, he wins 2 $ 2\$ . The game of Tent B B involves a computer that will flash one from 3 3 symbols. If the contestant guesses what symbol will be flashed, he wins 3 $ 3\$ . The game of Tent C C involves a computer that will flash one from 4 4 symbols. If the contestant guesses what symbol will be flashed, he wins 4 $ 4\$ . And so on. Tent A ( 1 2 chance of winning , 2 $ prize ) , Tent B ( 1 3 chance of winning , 3 $ prize ) , Tent C ( 1 4 chance of winning , 4 $ prize ) , . . . , Tent K ( 1 12 chance of winning , 12 $ prize ) \text{Tent} \space A \space (\dfrac{1}{2} \space \text{chance of winning}, \space 2\$ \space \text{prize}), \space \text{Tent} \space B \space (\dfrac{1}{3} \space \text{chance of winning}, \space 3\$ \space \text{prize}), \space \text{Tent} \space C \space (\dfrac{1}{4} \space \text{chance of winning}, \space 4\$ \space \text{prize}), \space ... \space , \space \text{Tent} \space K \space (\dfrac{1}{12} \space \text{chance of winning}, \space 12\$ \space \text{prize})

Question : If Larry plays all games once each, what is the probability in percentage ( % \% ) that Larry wins a total of 12 $ 12\$ ?

NOTE : The answer must be rounded to the nearest hundredths.


Try Circus of Luck 2 , 3 , and 4


The answer is 4.55.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Kaizen Cyrus
May 19, 2019

For Larry to win a total of 12 $ 12\$ , he must either:

  • win only Tent K K
  • win only Tent A A and I I
  • win only Tent B B and H H
  • win only Tent C C and G G
  • win only Tent D D and F F
  • win only Tent A A , B B , and F F
  • win only Tent A A , C C , and E E
  • win only Tent B B , C C , and D D

Meeting up with either of those scenarios, the prize(s) he'd win will add up to 12 $ 12\$ .

Now, let's compute the probability of each scenario.

Scenario 1 1 : Winning only Tent K K 1 2 × 2 3 × 3 4 × 4 5 × 5 6 × 6 7 × 7 8 × 8 9 × 9 10 × 10 11 × 1 12 = 0.7576 % \scriptsize \textcolor{#D61F06}{\dfrac{1}{2}} × \textcolor{#D61F06}{\dfrac{2}{3}} × \textcolor{#D61F06}{\dfrac{3}{4}} × \textcolor{#D61F06}{\dfrac{4}{5}} × \textcolor{#D61F06}{\dfrac{5}{6}} × \textcolor{#D61F06}{\dfrac{6}{7}} × \textcolor{#D61F06}{\dfrac{7}{8}} × \textcolor{#D61F06}{\dfrac{8}{9}} × \textcolor{#D61F06}{\dfrac{9}{10}} × \textcolor{#D61F06}{\dfrac{10}{11}} × \textcolor{#3D99F6}{\dfrac{1}{12}} = 0.7576\%

Scenario 2 2 : Winning only Tent A A and I I 1 2 × 2 3 × 3 4 × 4 5 × 5 6 × 6 7 × 7 8 × 8 9 × 1 10 × 10 11 × 11 12 = 0.9259 % \scriptsize \textcolor{#3D99F6}{\dfrac{1}{2}} × \textcolor{#D61F06}{\dfrac{2}{3}} × \textcolor{#D61F06}{\dfrac{3}{4}} × \textcolor{#D61F06}{\dfrac{4}{5}} × \textcolor{#D61F06}{\dfrac{5}{6}} × \textcolor{#D61F06}{\dfrac{6}{7}} × \textcolor{#D61F06}{\dfrac{7}{8}} × \textcolor{#D61F06}{\dfrac{8}{9}} × \textcolor{#3D99F6}{\dfrac{1}{10}} × \textcolor{#D61F06}{\dfrac{10}{11}} × \textcolor{#D61F06}{\dfrac{11}{12}} = 0.9259\%

Scenario 3 3 : Winning only Tent B B and H H 1 2 × 1 3 × 3 4 × 4 5 × 5 6 × 6 7 × 7 8 × 1 9 × 9 10 × 10 11 × 11 12 = 0.5208 % \scriptsize \textcolor{#D61F06}{\dfrac{1}{2}} × \textcolor{#3D99F6}{\dfrac{1}{3}} × \textcolor{#D61F06}{\dfrac{3}{4}} × \textcolor{#D61F06}{\dfrac{4}{5}} × \textcolor{#D61F06}{\dfrac{5}{6}} × \textcolor{#D61F06}{\dfrac{6}{7}} × \textcolor{#D61F06}{\dfrac{7}{8}} × \textcolor{#3D99F6}{\dfrac{1}{9}} × \textcolor{#D61F06}{\dfrac{9}{10}} × \textcolor{#D61F06}{\dfrac{10}{11}} × \textcolor{#D61F06}{\dfrac{11}{12}} = 0.5208\%

Scenario 4 4 : Winning only Tent C C and G G 1 2 × 2 3 × 1 4 × 4 5 × 5 6 × 6 7 × 1 8 × 8 9 × 9 10 × 10 11 × 11 12 = 0.3968 % \scriptsize \textcolor{#D61F06}{\dfrac{1}{2}} × \textcolor{#D61F06}{\dfrac{2}{3}} × \textcolor{#3D99F6}{\dfrac{1}{4}} × \textcolor{#D61F06}{\dfrac{4}{5}} × \textcolor{#D61F06}{\dfrac{5}{6}} × \textcolor{#D61F06}{\dfrac{6}{7}} × \textcolor{#3D99F6}{\dfrac{1}{8}} × \textcolor{#D61F06}{\dfrac{8}{9}} × \textcolor{#D61F06}{\dfrac{9}{10}} × \textcolor{#D61F06}{\dfrac{10}{11}} × \textcolor{#D61F06}{\dfrac{11}{12}} = 0.3968\%

Scenario 5 5 : Winning only Tent D D and F F 1 2 × 2 3 × 3 4 × 1 5 × 5 6 × 1 7 × 7 8 × 8 9 × 9 10 × 10 11 × 11 12 = 0.3472 % \scriptsize \textcolor{#D61F06}{\dfrac{1}{2}} × \textcolor{#D61F06}{\dfrac{2}{3}} × \textcolor{#D61F06}{\dfrac{3}{4}} × \textcolor{#3D99F6}{\dfrac{1}{5}} × \textcolor{#D61F06}{\dfrac{5}{6}} × \textcolor{#3D99F6}{\dfrac{1}{7}} × \textcolor{#D61F06}{\dfrac{7}{8}} × \textcolor{#D61F06}{\dfrac{8}{9}} × \textcolor{#D61F06}{\dfrac{9}{10}} × \textcolor{#D61F06}{\dfrac{10}{11}} × \textcolor{#D61F06}{\dfrac{11}{12}} = 0.3472\%

Scenario 6 6 : Winning only Tent A A , B B , and F F 1 2 × 1 3 × 3 4 × 4 5 × 5 6 × 1 7 × 7 8 × 8 9 × 9 10 × 10 11 × 11 12 = 0.6944 % \scriptsize \textcolor{#3D99F6}{\dfrac{1}{2}} × \textcolor{#3D99F6}{\dfrac{1}{3}} × \textcolor{#D61F06}{\dfrac{3}{4}} × \textcolor{#D61F06}{\dfrac{4}{5}} × \textcolor{#D61F06}{\dfrac{5}{6}} × \textcolor{#3D99F6}{\dfrac{1}{7}} × \textcolor{#D61F06}{\dfrac{7}{8}} × \textcolor{#D61F06}{\dfrac{8}{9}} × \textcolor{#D61F06}{\dfrac{9}{10}} × \textcolor{#D61F06}{\dfrac{10}{11}} × \textcolor{#D61F06}{\dfrac{11}{12}} = 0.6944\%

Scenario 7 7 : Winning only Tent A A , C C , and E E 1 2 × 2 3 × 1 4 × 4 5 × 1 6 × 6 7 × 7 8 × 8 9 × 9 10 × 10 11 × 11 12 = 0.5556 % \scriptsize \textcolor{#3D99F6}{\dfrac{1}{2}} × \textcolor{#D61F06}{\dfrac{2}{3}} × \textcolor{#3D99F6}{\dfrac{1}{4}} × \textcolor{#D61F06}{\dfrac{4}{5}} × \textcolor{#3D99F6}{\dfrac{1}{6}} × \textcolor{#D61F06}{\dfrac{6}{7}} × \textcolor{#D61F06}{\dfrac{7}{8}} × \textcolor{#D61F06}{\dfrac{8}{9}} × \textcolor{#D61F06}{\dfrac{9}{10}} × \textcolor{#D61F06}{\dfrac{10}{11}} × \textcolor{#D61F06}{\dfrac{11}{12}} = 0.5556\%

Scenario 8 8 : Winning only Tent B B , C C , and D D 1 2 × 1 3 × 1 4 × 1 5 × 5 6 × 6 7 × 7 8 × 8 9 × 9 10 × 10 11 × 11 12 = 0.3472 % \scriptsize \textcolor{#D61F06}{\dfrac{1}{2}} × \textcolor{#3D99F6}{\dfrac{1}{3}} × \textcolor{#3D99F6}{\dfrac{1}{4}} × \textcolor{#3D99F6}{\dfrac{1}{5}} × \textcolor{#D61F06}{\dfrac{5}{6}} × \textcolor{#D61F06}{\dfrac{6}{7}} × \textcolor{#D61F06}{\dfrac{7}{8}} × \textcolor{#D61F06}{\dfrac{8}{9}} × \textcolor{#D61F06}{\dfrac{9}{10}} × \textcolor{#D61F06}{\dfrac{10}{11}} × \textcolor{#D61F06}{\dfrac{11}{12}} = 0.3472\%

NOTE : All of the results above are rounded to the nearest ten-thousandths.

Adding up those possibilities, the chance of Larry winning 12 $ 12\$ , rounded to the nearest hundredths, is 4.55 % \boxed{4.55}\% .

Nicely explained!

Chris Lewis - 2 years ago
Alex Burgess
May 21, 2019

Chances of losing every game = 1 2 2 3 . . . 11 12 = 1 12 = \frac{1}{2} \frac{2}{3} ... \frac{11}{12} = \frac{1}{12} . If we instead winning a game worth N $ N\$ , we divide this by ( N 1 ) (N-1) .

We can make 12$ by:

s u m P r o b a b i l i t y 12 1 12 11 10 + 2 1 12 9 1 9 + 3 1 12 8 2 8 + 4 1 12 7 3 7 + 5 1 12 6 4 7 + 3 + 2 1 12 6 2 1 6 + 4 + 2 1 12 5 3 1 5 + 4 + 3 1 12 4 3 2 \begin{matrix} sum & | & Probability \\ 12 & | & \frac{1}{12*11} \\ 10 + 2 & | & \frac{1}{12*9*1}\\ 9 + 3 & | & \frac{1}{12*8*2} \\ 8 + 4 & | & \frac{1}{12*7*3} \\ 7 + 5 & | & \frac{1}{12*6*4} \\ 7 + 3 + 2 & | & \frac{1}{12*6*2*1} \\ 6 + 4 + 2 & | & \frac{1}{12*5*3*1} \\ 5 + 4 + 3 & | & \frac{1}{12*4*3*2} \\ \end{matrix}

Total = 1 12 ( 1 11 + 1 9 + 1 16 + 1 21 + 1 24 + 1 12 + 1 15 + 1 24 ) = 30241 665280 = 0.045456 \frac{1}{12} * ( \frac{1}{11} + \frac{1}{9} + \frac{1}{16} + \frac{1}{21} + \frac{1}{24} + \frac{1}{12} + \frac{1}{15} + \frac{1}{24} ) = \frac{30241}{665280} = 0.045456

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...