2002 Math OSK, Number 5

Algebra Level pending

Suppose that x n { x }^{ -n } equals to ( 1 x ) n (\frac { 1 }{ x } { ) }^{ n } for every real number x. Then a 3 a 3 { a }^{ 3 }-{ a }^{ -3 } equals to...

( a 1 a ) ( a 2 2 + 1 a 2 ) (a-\frac { 1 }{ a } )({ a }^{ 2 }-2+\frac { 1 }{ { a }^{ 2 } } ) ( 1 a a ) ( a 2 1 + 1 a 2 ) (\frac { 1 }{ a } -a)({ a }^{ 2 }-1+\frac { 1 }{ { a }^{ 2 } } ) ( 1 a a ) ( a 2 + 1 + 1 a 2 ) (\frac { 1 }{ a } -a)({ a }^{ 2 }+1+\frac { 1 }{ { a }^{ 2 } } ) ( a 1 a ) ( a 2 + 1 + 1 a 2 ) (a-\frac { 1 }{ a } )({ a }^{ 2 }+1+\frac { 1 }{ { a }^{ 2 } } ) None of the other answers are true

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Nelson Mandela
Apr 4, 2015

so, a 3 a 3 { a }^{ 3 }-{ a }^{ -3 } = a 3 1 a 3 { a }^{ 3 }-{ \frac { 1 }{ { a }^{ 3 } } } .

Using a 3 b 3 = ( a b ) ( a 2 + b 2 + a b ) { a }^{ 3 }-{ b }^{ 3 }=(a-b)({ a }^{ 2 }+{ b }^{ 2 }+ab) ,

answer is ( a 1 a ) ( a 2 + 1 a 2 + 1 ) (a-\frac { 1 }{ a } )({ a }^{ 2 }+{ \frac { 1 }{ { a }^{ 2 } } }+1)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...