Classic!

Algebra Level 3

( x 1 ) ( y 1 ) ( z 1 ) \large (x-1)(y-1)(z-1)

If x , y x,y and z z are positive real numbers satisfying 1 x + 1 y + 1 z = 1 \dfrac1x + \dfrac1y + \dfrac1z=1 , then find the minimum value of the expression above.


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

( x 1 ) ( y 1 ) ( z 1 ) = x y z ( x y + y z + z x ) + ( x + y + z ) 1 From 1 x + 1 y + 1 z = 1 x y + y z + z x = x y z = 0 + x + y + z 1 Applying AM-HM inequality 9 1 x + 1 y + 1 z 1 Equality occurs when x = y = z = 3 9 1 = 8 \begin{aligned} (x-1)(y-1)(z-1) & = \color{#3D99F6}{xyz - (xy+yz+zx)} +(x+y+z) -1 \quad \quad \small \color{#3D99F6}{\text{From }\frac1x+\frac1y+\frac1z = 1 \implies xy+yz+zx = xyz} \\ & = \color{#3D99F6}{0} + \color{#D61F06}{x+y+z} - 1 \quad \quad \small \color{#D61F06}{\text{Applying AM-HM inequality}} \\ & \ge \color{#D61F06}{\frac9{\frac1x+\frac1y+\frac1z}} - 1 \quad \quad \small \color{#D61F06}{\text{Equality occurs when }x=y=z=3} \\ & \ge 9-1 = \boxed{8} \end{aligned}


About AM-GM inequality .

Nicely done sir , (+1)!!

Rishabh Tiwari - 5 years ago
P C
Jun 10, 2016

Set a = 1 x , b = 1 y , c = 1 z a=\frac{1}{x}, b=\frac{1}{y}, c=\frac{1}{z} , we'll have a + b + c = 1 a+b+c=1 and the expression can be written as ( 1 a ) ( 1 b ) ( 1 c ) a b c = ( b + c ) ( c + a ) ( a + b ) a b c A M G M 8 a b c a b c = 8 \frac{(1-a)(1-b)(1-c)}{abc}=\frac{(b+c)(c+a)(a+b)}{abc}\stackrel{AM-GM}\geq\frac{8abc}{abc}=8 The equality holds when a = b = c = 1 3 a=b=c=\frac{1}{3} or x = y = z = 3 x=y=z=3

Nice solution, (+1)!

Rishabh Tiwari - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...